

SSC JE PRE 2021 Cusim LIVE ONLINE CLASSES

ChELPLINE - 8595517959, 7827455078

CIVIL ENGINEERING

INDIVIDUAL COURSES Validity:- 3 Months

Soil Mechanics 299/-

RCC 299/-

Building Material 299/-
Solid Mechanics 299/-

Fluid Mechanics 299/-
Surveying 199/-
Highway
199/-
Environmental 399/-
(-) 8595517959,7827455078 焲 DOWNLOAD EVEREXAM APP
 \title{
硅
 \title{
硅
 CIVIL ENGINEERING
 ALL FORMULA RECORDED BATCH-2
}
> Validity : 5 Months
> PDF Notes
> Recorded Batch

Foundation Batch

ALL STATE AE/JE EXAMINATION

© FULL THEORY BATCH

- VALIDITY - 1 YEAR
- DURATION - 400+ HOURS ENROLL NOW

Q:1) In the straight line method the expression for depreciation of a machine having purchasing cost C, scrap value S and useful life of the machinery n , is
A: (C+S)/n
B : (C-S)/n
C: $[1-(C / S)] \times n$
D : $[1+(C / S)] \times n$

C : Shuttering
D : Damp proof course
$\mathrm{Q}: 3)$ Which of the following is the multiplying factor for the estimation of lead for sandy tracks?
A:1
B: 1.1
C: 1.2
D: 1.4

Q : 4) The expected out turn (Square metre) of sawing of the soft wood per mason per day is
A: 2.5
B : 5.5
C : 8.5
D: 10

Q:5) Which of the following is the unit of measurement for the sills of windows?
A : Cubic meter
B: Meter
C: Number
D : Square meter

A : 0.001
B: 0.01
C: 0.02
D: 0.1

1. Clear coverage area
2. Area of the walls
3. Sills of the doors
4. Sills of the windows

Options
A : 1 and 3
B:2 and 3
C: 2, 3 and 4
D: 2 and 4

A: Bags of 50 kg
B : Cubic metre
C : Kilograms
D : Quintals statement for length of the long wall as one move from earthwork to brick work in super structure in long and short wall method?
A : Its value decreases
B : Its value depends upon the length of walls
C: Its value increases
D : Its value remains same

B : Form works
C : Concrete Jaffries
D : R.C. Chhajja

Q : 11) For one sq.m. single brick flat soling (Conventional size), the number of brick required is
A : 54
B: 62
C: 32
D: 44

Q: 12) For $1 \mathrm{sq} . \mathrm{m}$. of 7.5 cm thick lime terracing in roof with brick khoa, surkhi, lime (2 : $\mathbf{2}$: 7) including finishing, the quantity of surkhi required is
A : 0.023 cu.m
B : $0.025 \mathrm{cu} . \mathrm{m}$
C : $0.019 \mathrm{cu} . \mathrm{m}$
D : $0.022 \mathrm{cu} . \mathrm{m}$

Q:13) In straight line method, the annual depreciation of the property is
$\mathrm{A}: \frac{\text { Original cost -annual sinking fund }}{\text { Life in years }}$
$\mathrm{B}: \frac{\text { Life in years }}{\text { Original cost }+ \text { scrap value }}$
C. Original cost-scrap value

Life in years
D: $\frac{\text { Original cost scrap value }}{\text { Life in years }}$
$\mathrm{Q}: 14)$ The quantity of brickwork in foundation and plinth per day per mason should be
A : $1.75 \mathrm{cu} . \mathrm{m}$
B : $2.5 \mathrm{cu} . \mathrm{m}$
C: $1.0 \mathrm{cu} . \mathrm{m}$
D : $1.25 \mathrm{cu} . \mathrm{m}$

Q : 15) Number of modular bricks required for one cubic metre of brick masonry are :
A: 400
B : 450
C : 550
D : 500

Q : 16) For 15 mm thick cement plastering 1 : 6 on 100 sq.m new brick work, the quantity of cement required is:
A : $0.200 \mathrm{~m}^{\mathbf{3}}$
B : $0.247 \mathrm{~m}^{3}$
C : $0.274 \mathrm{~m}^{3}$
D : $0.343 \mathrm{~m}^{\mathbf{3}}$

ESTIMATION LECTURE - 3 || SSC JE PYQ|| BY MOOLCHAND SIR

Q: 17) If ' T ' is the rate of interest expressed in decimal and ' n ' the number of years, then coefficient of annual sinking find, Ic is
$A: I_{c}=\frac{\left[(1+i)^{n}-1\right]}{(1+i)-1}$
$B: I_{c}=\frac{i}{(1+i)^{n}-1}$
$C: I_{c}=\frac{i}{(1-i)^{n}+1}$
$\mathrm{D}: I_{c}=\frac{i}{(1+i)^{n}+1}$

C : $0.00816 \mathrm{~d}^{2}$
D: 0.00816 d

A : Superintending engineer
B : Chief engineer
C : Assistance engineer
D : Executive engineer calculated in:
A: m
B: $\mathbf{m}^{\mathbf{2}}$
$\mathrm{C}: \mathrm{m}^{3}$
D: Lump-sum

B: 50\%
C : 25\%
D: 85\% of square with centreline dimensions of outer walls as $14.7 \mathrm{~m} \times 14.7 \mathrm{~m}$. If the thickness of the wall in superstructure is 0.30 m , then its plinth area is:

A : $216 \mathrm{~m}^{2}$
B: $\mathbf{2 2 5} \mathrm{m}^{\mathbf{2}}$
C : $234 \mathrm{~m}^{2}$
D : $\mathbf{1 5 0} \mathrm{m}^{\mathbf{2}}$

B : 25 mm
C : 40 mm
D : 6 mm

Q: 24) Using straight line method annual depreciation D is equal to:

A : $\frac{\text { Original cost -life in year }}{\text { Scrap value }}$
B: Original cost -Scrap value
Life in year
C : $\frac{\text { Life in year-Scrap value }}{\text { Original cost }}$
D: $\frac{\text { Scrap value-Life in year }}{\text { Original cost }}$

Q : 25) The following document contains detailed description of all items of work excluding their quantities, along with the current rates:
A : Abstract estimate
B : Schedule of rates
C : Analysis of rates
D: tender document

Q:26) The system of organization introduced by F.W. taylor is known as-
A : Effective organization
B : Functional organization
C : Line and staff organization
D: Line organization

Q : 27) Salvage value is defined as-
A : value of dismantled materials of a property at the end of its utility period
B : Estimated value of a built up property at the end of its useful life without being dismantled C : Value of the property shown in the account book in that particular year
D : Present value of a property considering it to be replaced at the current market rates

A : Saturation
B : Depreciation
C : Negotiation
D : Valuation

A : Cubic m
B: \% sq m
C: Meter
D:Sq. m

Q : 30) Cost slope is the ratio of
A : Increase in cost by increase in time
B : Decrease in cost increase in time
C : Increase in cost by decrease in time
D : Decrease in cost by decrease in time

Q:31) Consider the following statements regarding the slope of Cost-time curve.

1. It is given by difference between normal cost and crash cost divided by crash time
2. It is given by difference between crash cost and normal cost divided by difference between crash time and normal time.
3. It is given by difference of crash cost and normal cost divided by normal time.
4. It is given by crash cost divided by crash time. Which of these statements are/is correct?
A : 1 only
B : 2 only
C : 2 and 3 only
D : 3 and 4

Q : 32) The cost of a machine is Rs. 10,000 with a useful life of 10 years. Its depreciated cost, after 5 years, if the salvage value is Rs 1,000 on straight line basis, will be
A : Rs. 1,500
B : Rs. 3,500
C : Rs. 5,500
D : Rs. 7,500

Q:33) A building costs Rs. 40000. Considering scrap value as 10% of the cost and life as 60 years, the depreciated value after 12 years is:
A : 33800
B : 34800
C:32800
D:31800

A : length, breadth, height
B : Breadth, length, height
C : Height, length, breadth
D : Length, height, breadth includes
A : Area of a wall at the floor level
B : Internals shafts for sanitary installations upto 2 sqm in area C : Lift and wall including landing
D : Area of the cantilevered porch

Ever 10 Congratulations 70 All Selected

किसी भी प्रकार की सहायता
 के लिए संपर्क करें।

 8595517959, 7827455078

