Eververam Online

＞START DATE－ 5 APRIL 2022 >10 SUBJECTWISE TESTS（ 50 QUES） >04 FULL LENGTH TESTS（180 QUES） >1 TEST free（SUBJECTWISE） ＞VALIDITY－ 2 MONTH

з299：₹ 150 ／－

UPSSSC JE 2022 Everon TEST SERIES
＞START DATE－ 31 MARCH 2022 ＞TOTAL TEST－ 6 FULL LENGTH TESTS >1 TEST free
＞VALIDITY－ 1 MONTH ＞150 QUESTIONS FOR EACH TEST

3250：₹ 125 ／－

Evernem CIVIL ENGINEERING

JHIATHINID SSGE 2022

Daily Live Classes

PDF Notes

Best Content

LiveChat

Course Details

LIVE
 Online Batch

ANY QUERIES JUST CALL NOW 8595517959

Download Now EverExam App

START - 2 JANUARY 2022
VALIDITY - 1 YEAR
DURATION - 200+ HOURS ENROLL NOW

Everfon CIVIL ENGINEERING

ANY QUERIES JUST CALL NOW 8595517959
\rightarrow Course Details
START - 2 JANUARY 2022
VALIDITY - 1 YEAR
DURATION - 200+ HOURS
ENROLL NOW

Download Now EverExam App

 At Just3159ctz

Foundation Batch

ALL STATE AE/JE EXAMINATION

UPPSC

Recorded Batch

At Just
VALIDITY - TILL THE EXAM
\checkmark DURATION - 250+ HOURS
\because ENROLL NOW
\because PDF NOTES

Q :) The modulus of elasticity of high tensile steel is
A : Smaller than that of mild steel
B : Equal to that of mild steel
C : Larger than that of mild steel
D : Equal to that of aluminium

Q :) Consider the following statements concerning both the working stress design and ultimate strength design of reinforced concrete:

1. Plane section before bending remains plane after bending
2. The tensile strength of concrete is ignored of these statements
A : 1 alone is correct
B: $\mathbf{2}$ alone is correct
C : Both 1 and 2 are correct
D : Both 1 and $\mathbf{2}$ are false

RCC ESE ONE LINER PREVIOUS YEAR

Q :) The maximum strain in concrete at the outermost compression fibre in the limit state design of flexural member is (as per IS : 456-1978)
A: 0.0020
B: 0.0035
C: 0.0065
D : 0.0050

Q :) Deflections can be controlled by using the appropriate

A : Aspect ratio

B : Modular ratio
C : Span / depth ratio
D : Water / cement ratio

Q :) In limit state approach spacing of main reinforcement controls primarily
A:Collapse
B : Cracking
C : Deflection
D : Durability

Q :) Unequal top and bottom reinforcement in a reinforced concrete section leads to
A : Creep deflection
B : Shrinkage deflection
C : Long-term deflection
D : Large deflection

RCC ESE ONE LINER PREVIOUS YEAR

Q :) The final deflection due to all loads including the effects of temperature, creep and shrinkage and measured from as-cast level of supports of floors, roofs and all other horizontal members should NOT exceed
A : Span / 350
B : Span / 300
C : Span / 250
D : Span / 200

Q :) As compared to working stress method of design, limit state method takes concrete to
A : A high stress level
B : A lower stress level
C : The same stress level
D : Sometimes higher but generally lower stress level

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org
Q :) The probability of failure implied in limit state design is of the order of
A : $\mathbf{1 0}^{-2}$
B : $\mathbf{1 0}^{-\mathbf{3}}$
C : 10^{-4}
D : $\mathbf{1 0}^{-5}$

RCC ESE ONE LINER PREVIOUS YEAR

Q :) Long term elastic modulus in terms
of creep coefficient (θ) and 28-day characteristic strength $\left(f_{c k}\right)$ is given by
$\mathrm{A}: \frac{\mathbf{5 0 0 0} \sqrt{f_{c k}}}{1+\boldsymbol{\theta}} \mathrm{MPa}$
$\mathrm{B}: \frac{50000 \sqrt{f_{c k}}}{1+\boldsymbol{\theta}} \mathrm{MPa}$
$\mathrm{C}: \frac{5000 f_{c k}}{1+\sqrt{\boldsymbol{\theta}}} \mathrm{MPa}$
$\mathrm{D}: \frac{5000 \sqrt{f_{c k}}}{\sqrt{1+\boldsymbol{\theta}}} \mathrm{MPa}$

Q :) Which one of the following statements is correct?
The characteristic strength of concrete is
A : Higher than the average cube strength
B : Lower than the average cube strength
C : The same as the average cube strength
D : Higher than 90\% of the average cube strength

Q :) Which one of the following is the correct expression for the target mean strength f_{t} of concrete mix?
$\mathrm{A}: \boldsymbol{f}_{\boldsymbol{t}}=\boldsymbol{K} \boldsymbol{f}_{\boldsymbol{c k}}+\boldsymbol{S}$
$\mathrm{B}: \boldsymbol{f}_{\boldsymbol{t}}=\boldsymbol{f}_{\boldsymbol{c k}}+\boldsymbol{K} \boldsymbol{S}$
$\mathrm{C}: \boldsymbol{f}_{\boldsymbol{t}}=f_{\boldsymbol{c k}}+S$
$\mathrm{D}: \boldsymbol{f}_{\boldsymbol{t}}=\boldsymbol{K} \boldsymbol{f}_{\boldsymbol{c k}}+\boldsymbol{K}$
Where $f_{c k}$ is characteristic strength, K is probability factor and S is standard deviation

RCC ESE ONE LINER PREVIOUS YEAR

$\mathrm{Q}:$) What is the minimum value of individual test results (in $\mathrm{N} / \mathrm{mm}^{2}$) for compressive strength compliance requirement for concrete M20 as per codal provision?
$\mathrm{A}: \boldsymbol{f}_{\boldsymbol{c k}}-1$
B: $f_{c k}-3$
C : $f_{c k}-4$
$\mathrm{D}: \boldsymbol{f}_{\boldsymbol{c k}}-5$

RCC ESE ONE LINER PREVIOUS YEAR

Q :) What is the ratio of flexural strength ($f_{c r}$) to the characteristic compressive strength of concrete ($f_{c k}$) for M25 grade concrete?
A: 0.08
B: 0.11
C: 0.14
D : 0.17

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org \quad Daily Class - 8:30 PM
Q :) Grade of steel is designated as Fe 415, if
A : The upper yield stress of the steel is $415 \mathrm{~N} / \mathrm{mm}^{2}$
B : The ultimate stress of the steel is 415
$\mathrm{N} / \mathrm{mm}^{2}$
C : The partial safety factor is 1.15
D : The characteristic strength is $415 \mathrm{~N} /$ $\mathrm{N} / \mathrm{mm}^{2}$

Q :) The additional cover thickness to be provided in reinforced concrete members that are totally immersed in seawater is

A : $\mathbf{2 5} \mathbf{~ m m}$

B : $\mathbf{3 0} \mathbf{~ m m}$
C : $\mathbf{3 5} \mathrm{mm}$
D : 40 mm

Q :) The minimum grade of reinforced concrete in seawater as per IS 456-2000 is

A: M 15
B: M 20
C: M 30
D : M 40

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org
Q :) As per IS - 456 : 2000, the value of maximum compression strain in concrete in axial compression for limit state of collapse is
A: 0.001
B: 0.002
C: 0.003
D : 0.004

RCC ESE ONE LINER PREVIOUS YEAR

Q :) Fatigue in RCC beams will not be a problem if the number of cycles is less than

A: 20,000
B : 25,000
C: 30,000
D : 35,000 section does not exceed the permissible shear stress (τ_{c})
A : Minimum shear reinforcement is still provided
B : Shear reinforcement is provided to resist the nominal shear stress
C : No shear reinforcement is provided
D : Shear reinforcement is provided for the difference of the two

Q :) The chances of diagonal tension cracks in R.C.C. member reduce when
A : Axial compression and shear force act simultaneously
B : Axial tension and shear force act simultaneously
C : Only shear force act
D : Flexural and shear force act simulataneously

RCC ESE ONE LINER PREVIOUS YEAR

Q :) What is the adoptable maximum spacing between vertical stirrups in an RCC beam of rectangular cross-section having an effective depth of 300 mm ?
A : $\mathbf{3 0 0} \mathbf{~ m m}$
B : $\mathbf{2 7 5} \mathrm{mm}$
C : $\mathbf{2 5 0 \mathrm { mm }}$
D : $\mathbf{2 2 5}$ mm

Q:) In a reinforced concrete section, shear stress distribution is diagrammatically
A : Wholly parabolic
B : Wholly rectangular
C : Parabolic above NA and rectangular below NA

D : Rectangular above NA and Parabolic below NA

When HYSD bars are used in place of mild steel bars in a beam，the bond strength
A ：Does not change
B ：Increases
C ：Decreases
D ：Becomes zero

Q :) What is the bond stress acting parallel to the reinforcement on the interface between bar and concrete?

A : Shear stress
B : Local stress
C : Flexural stress
D : Bearing stress

Q :) Lap length of reinforcement in compression shall not be less than.
A : $\mathbf{3 0} \boldsymbol{\phi}$
B : $\mathbf{2 4} \boldsymbol{\phi}$
C : $20 \boldsymbol{\phi}$
D: $5 \boldsymbol{\phi}$
Where ϕ is diameter of bar

Q :) The bond between steel and concrete is mainly due to

1. Mechanical resistance
2. Pure adhesive resistance
3. Frictional resistance

A: 1 and 2 only
B: 1 and 3 only
C : 2 and 3 only
D : 1, 2 and 3

Q :) If a beam is likely to fail due to high bonding stresses, then its bond strength can be increased most economically by
A : Providing vertical stirrups
B : Increasing the depth of the beam
C : Using smaller diameter bars in correspondingly More number
D : Using higher diameter bars by reducing their numbers in cross section of width b and depth D is subjected to a combined action of bending moment M and torsional moment T . The longitudinal reinforcement shall be designed for a moment M_{e} given by
$\mathrm{A}: M_{e}=M \frac{T\left(1+\frac{d}{b}\right)}{1.7_{b}}$
B: $M_{e}=M \frac{T\left(1 . \frac{1}{D}\right)}{\mathcal{D}^{7}}$
$\mathrm{C}: M_{e}=\frac{T\left(1-\frac{\mathrm{D}}{b}\right)^{7}}{1.7_{b}}$
$\mathrm{D}: M_{e}=\frac{T\left(1-\frac{b}{D}\right)}{1.7}$

Q :) Shrinkage deflections in case of rectangular beams and slabs can be eliminated by putting
A : Compression steel equal to tensile steel
B : Compression steel more than tensile steel
C : Compression steel less than tensile steel
D : Compression steel 25\% greater than tensile steel

Q :) In case of 2-way slab, the limiting deflection of the slab is
A : Primarily a function of the long span
B : Primarily a function of the short span
C : Independent of long or short span
D : Dependent on both long and short spans

RCC ESE ONE LINER PREVIOUS YEAR

 reinforcement in a beam isA : 0.03 bd
B : 0.04 bD
C : 0.12 bd
D : 0.12 bd

Q :) A reinforced concrete slab is 75 mm thick. The maximum size of reinforcement bar that can be used is

A : 12 mm diameter
B : $\mathbf{1 0} \mathbf{~ m m}$ diameter
C : 8 m diameter
D : 6 mm diameter

Q :) In an RCC beam, side face reinforcement is provided if its depth exceeds

A : $\mathbf{3 0 0} \mathrm{mm}$
B : 500 mm
C : 700 mm
D : 750 mm

Q :) In the limit state method of design, the failure criterion for reinforced concrete beams and columns is
A : Maximum principal stress theory
B : Maximum principal strain theory
C : Maximum shear stress theory
D : Maximum strain energy theory

RCC ESE ONE LINER PREVIOUS YEAR

Q :) For the purpose of design as per IS :
456, deflection of RC slab or slab or beam is limited to

A : 0.2\% of span
B : 0.25\% of span
C : 0.4\% of span
D : 0.45\% of span wall, the
A : Vertical load should fall within the middle-third of base width
B : Horizontal thrust should act h/3 from base
C : Resultant load should fall within the distance of one-sixth of base width on either side of its midpoint
C : Resultant load should fall within a distance of one-eight of base width on either side of its midpoint

Q :) In case of deep beam or in thin webbed RCC members, the first crack from is

A: Flexural crack
B : Diagonal crack due to compression
C : Diagonal crack to tension
D : Shear crack

Q :) The reinforcement for tension, when required in members, shall consists of
A : Only longitudinal reinforcement in the tension face
B : Only longitudinal reinforcement in the compression face
C : Only two legged closed loops enclosing the corner reinforcement
D : Both longitudinal and transverse reinforcement

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org
Q :) At T-beam behaves as a rectangular beam of width equal to its flange if its neutral axis
A : Coincides with centroid of reinforcement

B : Coincides with centroid of T-section
C : Remains within the flange
D : Remains in the web

Q:) In RCC beams, as the percentage areas of tensile steel increases
A : Depth of neutral axis increases
B : Depth of neutral axis decreases
C : Depth of the neutral axis does not change
D : Level arm increases

Q :) In the limit state method, balanced design of a reinforced concrete beam givens.
A : Smallest concrete section and maximum area of reinforcement
B : Largest concrete section and maximum area of reinforcement
C : Smallest concrete section and minimum area of reinforcement
D : Largest concrete section and minimum area of reinforcement

RCC ESE ONE LINER PREVIOUS YEAR

Q :) The maximum percent of moment redistribution allowed in RCC beams is
A: 10\%
B: 20\%
C: 30\%
D : 40\%

RCC ESE ONE LINER PREVIOUS YEAR

Q :) A simply supported beam has an effective span of 16 m . What shall be the limiting ratio of span to effective depth as per IS 456 - 20000?
A : 26
B : 20
C: 12.5
D: 7

RCC ESE ONE LINER PREVIOUS YEAR

Q :) A simply supported beam is
considered as a deep beam if the ratio of effective span to overall depth is less than

A:1
B: 2
C: 3
D: 4

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org
Q :) Minimum clear cover (in mm) to the main steel bars in slab, beam, column and footing respectively are
A : 10, 15, 20, 25
B : 15, 25, 40, 75
C: 20, 25, 30, 40
D : 20, 35, 40, 75

Q :) Lateral ties in RC columns are provided to resist
A : Bending moment
B : Shear
C : Buckling of longitudinal steel bars
D : Both bending moment and shear

Q :) Cross sectional area of metal core in composite column should not be more than

A: 4\%
B : 8\%
C: 16\%
D : 20\%

RCC ESE ONE LINER PREVIOUS YEAR

Q :) In a pedestal, the factor by which the effective length should not exceed the least lateral dimension is

A: 2
B: 3
C: 4
D: 5

Q :) Which one of the following
represents the ratio of volume of helical reinforcement to volume of core?
A $: 0.36\left(\frac{A_{g}}{A_{c}}-1\right) \frac{f_{c k}}{f_{y}}$
B $: 0.36\left(\frac{A_{g}}{A_{s}}-1\right) \frac{f_{c k}}{f_{y}}$
C $: 0.36\left(\frac{A_{s}}{A_{c}}-1\right) \frac{f_{c k}}{f_{y}}$
D $: 0.36\left(\frac{A_{c}}{A_{s}}-1\right) \frac{f_{c k}}{f_{y}}$

Q :) Design of foundation for a large generator is guided, primarily by

A : Frequency

B : Deformation
C : Strength
D : Stiffness maximum depth of foundation of a masonry footing is given by

$$
\begin{aligned}
& \mathrm{A}: \frac{p}{\gamma}\left(\frac{1+\sin \phi}{1-\sin \phi}\right) \\
& \mathrm{B}: \frac{p}{\gamma}\left(\frac{1-\sin \phi}{1+\sin \phi}\right) \\
& \mathrm{C}: \frac{p}{\gamma}\left(\frac{1+\sin \phi}{1-\sin \phi}\right)^{2} \\
& \mathrm{D}: \frac{p}{\gamma}\left(\frac{1-\sin \phi}{1 \mp \sin \phi}\right)^{2}
\end{aligned}
$$

Q :) The critical section of maximum bending moment in the footing under masonry will is located at
A : The middle of the wall
B : The face of the wall
C : Mid-way between the face and the middle of the wall
D : A distance equal to the effective depth of footing from the face of the wall

Q :) In a combined footing for two columns carrying unequal loads, the maximum hogging moment occurs at
A : The inside face of the heavier column
B : A section equidistant from both the columns
C : A section subjected to maximum shear force
D : A section subjected to zero shear force

Q :) In case of pre-tensioned RC beams
A : Shrinkage of concrete is of the order of 3×10^{-4}

B : Relaxation of steel can be ignored
C : Only one wire can be stretched at a time
D : Even mild steel can be used for prestressing

Q :) Prestressed concrete is more desirable in case of
A : Cylindrical pipe subjected to internal fluid pressure
B : Cylindrical pipe subjected to external fluid pressure
C : Cylindrical pipe subjected to equal internal and external fluid pressure
D : Cylindrical pipe subjected to end pressure

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org
Q :) The magnitude of loss of prestress due to relaxation of steel is in range of
A : Zero to 1\%
B : 2 to 8\%
C : 8 to 12\%
D : 12 to 14\% tensioned members?

A : Freyssinet system
B : Magnel-Blaon system
C : Hoyer system
D : Gifford-udall systemconcrete sleepers for the railways?

A : Post-tensioning
B : Pre-tensioning
C : Pre-tensioning followed by posttensioning
D : Partial pre-stressing

Q :) What is the allowable upward deflection in a prestress concrete member under serviceability limit state condition?
A: Span/250
B : Span/300
C : Span/350
D : Span/500

RCC ESE ONE LINER PREVIOUS YEAR

 stress in prestress uncracked concrete member of $\mathbf{M} \mathbf{2 5}$ grade?
A: 1 MPa

B: 1.5 MPa
C : $\mathbf{2} \mathrm{MPa}$
D: 2.5 MPa

Q :) In a cantilever retaining wall, the main steel reinforcement is provided
A : On the backfill side, in the vertical direction
B : On both, inner and outer, faces
C : In horizontal as well as in vertical directions

D : To counteract shear stresses

RCC ESE ONE LINER PREVIOUS YEAR

For Any Query Call - 8595517959 | Website - everexam.org
Q :) The recommended imposed load in staircase in residential buildings as per IS 875 is
A: $5.0 \mathrm{kN} / \mathrm{m}^{2}$
B: $3.0 \mathrm{kN} / \boldsymbol{m}^{\mathbf{2}}$
C: $1.5 \mathrm{kN} / \mathrm{m}^{2}$
D : $1.3 \mathrm{kN} / \mathrm{m}^{\mathbf{2}}$

Q :) The permissible of allowable compressive stress $f_{a c}$ of brick masonry does not depend on
A : Type of strength of bricks
B : Efflorescence of bricks
C : Strength of mortar
D : Slenderness ratio

Result : SSC JE 2019

Selected Candidates For DV From EverExam 100 + SZLECTION

Abhishek Gaur
Swaraj Chauhan

Tarique Akhter Deepak Yadav

Pankaj Gupta

Vikas Kumar Singh

Mohammad Adnan

Randhir Das

Udayveer

Suraj Singh

Arpit Verma

Yuresh Singh

Saguna Chaudhary

Saurabh

Install The EverExam App Now

