- 01. EDTA titration method of hardness determination of water sample uses an indicator which combines with hardness- causing divalent cations and forms a coloured complex. The name of the indicator and the colour of the formed complex respectively are
 - (a) Ferroin and dark blue
 - (b) Ferroin and wine red
 - (c) Eriochrome Black T and dark blue
 - (d) Eriochrome Black T and wine red
- 02. One Nephelometry Turbidity Unit (NTU) is equal to the turbidity produced by
 - (a) 1 mg SiO₂ dissolved in 1l of distilled water with the test being run according to absorption principle
 - (b) 1 mg SiO₂ dissolved in 1l of distilled water with the test being run according to scattering principle
 - (c) 1 mg Formazin dissolved in 1l of distilled water with the test being run according to absorption principle
 - (d) 1 mg Formazin dissolved in 1l of distilled water with the test being run according to scattering principle
- 03. Which one of the following tests employs Ethylene Diamine Tetra Acetic Acid as a titrating agent?
 - (a) Chlorides
 - (b) Dissolved oxygen
 - (c) Hardness
 - (d) Residual chlorine
- 04. The total hardness value obtained from the complete analysis of a water sample was found to be 120 mg/l. If the value of carbonate hardness is 50 mg/l, the noncarbonate hardness and alkalinity are, respectively
 - (a) 170 mg/l and 70 mg/l
 - (b) 170 mg/l and 50 mg/l
 - (c) 70 mg/l and 50 mg/l
 - (d) 50 mg/l and 70 mg/l
- 05. The dissolved oxygen in a water sample is generally estimated by Winkler modified method. Accordingly, approximately 200 ml volume of dissolved-oxygen-fixed solution shall be titrated with
 - (a) Sodium thiosulphate reagent using soluble starch as an indicator
 - (b) Sodium thiosulphate reagent using ferrain as an indicator
 - (c) Ferrous ammonium sulphate reagent using soluble starch as an indicator
 - (d) Ferrous ammonium sulphate reagent using ferroin as an indicator

06. The following residual chlorine compounds are formed during chlorination of water:

1. NH₂CI 2. NHCI₂ 3. HOCI 4. OCI-

The correct sequence of

formation of these residual chlorine compounds is

- (a) 2, 1, 3, 4 (b) 1, 2, 4, 3
- (c) 1, 2, 3, 4 (d) 2, 1, 4, 3
- 07.Match List-I (Type of water source) with List-II (Treatment to be given) and select the correct ans using the codes given below lists:

- A. Surface water (river or Water from infiltration 2.
- Aeration, coagulation sedimentation and disinfe
 Disinfection CuSO₄ treatment, coagusediment-ation, filtration disinfection
 Coagulation, flocculation

- 08. The flow chart of a water treatment plant is shown in the following figure. If it is proposed to defluoridate the water using Nalgonda treatment' then it should b

- (a) after adjusting the dose of lime and alur(b) after sedimentation(c) after filtration(d) before aeration

- 09. Which of the following treatment reduce salinity of water?
 - Flash mixing and sedimentation
 - 2. Electrodialysis
 - Reverse osmosis
 - 4. Freezing
 - 5. Filtration

Select the correct answer using the codes given below:

- (a) 1, 2, 3, 4 and 5
- (b) 2, 3 and 4
- (c) 1, 3 and 5
- (d) 1, 2 and 4
- 10. The cleaning of slow sand filter is done by
 - (a) reversing the direction of flow of water
 - (b) passing air through the filter
 - (c) passing a solution of alum and lime through the
 - (d) scraping off top layers of sand and admitting water
- 11.Match List-I (Name of impurity in water) with List-II (Removed by) and select the correct answer using the codes given below the lists:

List – I

List - I

- A. Fluorides 1. Activated carbon
- Manganese
- 2. Activated alumina
- Taste and odour 3. Manganese zeolite
- a. A-1, B-2, C-3
- b. A-2, B-3, C-1
- c. A-2, B-1, C-3

- 12.A river is the source of water for water supply to a town. Its water is very turbid and polluted. The correct sequence of steps for treating the river water would be
 - (a) Presedimentation → prechlorination → coagulation → sedimentation → filtration → post-chlorination
 - (b) Coagulation → sedimentation → postchlorination
 - (c) Coagulation → filtration → sedimen-tation
 - (d) Sedimentation → post-chlorination

13.Uniformity coefficient of filter sand is given by

- (a) $0_{50} / 0_{5}$
- (b) $0_{50} / 0_{10}$
- $(c) 0_{60} / 0_{5}$
- (d) $0_{60} / 0_{10}$
- 14. Zero hardness of water is achieved by
 - (a) Using lime soda process
 - (b) Excess lime treatment
 - (c) Ion exchange method
 - (d) Using excess alum dosage
- 15. Match List I with List II and select the correct answer:

List - I List – I

- A. Absence of fluorides 1. Methemoglobinaemia
- 2. Goitre B. Excess of lead C. Presence of excess 3. Dental caries nitrates 4. Anaemia
- D. Absence of iodide

- a. A-3, B-4, C-2, D-1
- b. A-2, B-3, C-4, D-1
- c. A-3.B-4.C-1.D-2 d. A-1, B-2, C-4, D-3
- 16. Which of the following treatment(s) will be indicated for a rural water supply from a deep groundwater
 - source?
 - 1. Sedimentation 2. Alum dosage.
 - 3. Potassium permanganate dosing
 - 4. Bleaching powder application.

Select the correct answer using the codes given below:

- (a) 1, 2 and 3
- (b) 1, 2 and 4
- (c) 3 and 4
- (d) 4 alone
- 17. Match List-I (Impurites to be removed from sewage) with List-II (Treatment unit used) and select the correct answer.

List - I List – II

- 1. Trickling filter A. Large floating matter B. Suspended inorganic matter 2. Primary clarifier
- Grit chamber 3. C. Suspended organic matter
- D. Dissolved organic matter

- a. A-3, B-4, C-2, D-1
- b. A-3, B-4, C-1, D-2 c. A-4, B-3, C-2, D-1
- d. A-4, B-3, C-1, D-2

18. Assertion (A): In the case of dual media filter, the rate of filtration is more than that of rapid sand filter.

Reason (R): The direction of flow is from fine medium to coarse medium.

- In a water treatment plant, dissolved iron and manganese can be removed from the water by
 - (a) Aeration
 - (b) Aeration and coagulation
 - (c) Aeration and flocculation
 - (d) Aeration and sedimentation
- 20. The various treatment process in a water treatment plant are listed below:
 - 1. Filtration
- 2. Chlorination
- 3. Sedimentation 4. Coagulation
- 5. Flocculation

The correct sequence of these processes in water treatment is

- (a) 1, 2, 3, 4, 5
- (b) 4, 5, 3, 1, 2
- (c) 2, 3, 1, 5, 4
- (d) 1, 2, 5, 3, 4

www.everexam.org