Q : Deflection can be controlled by using the appropriate:
A : Aspect ratio
B : Modular ratio
C: Span/depth ratio
D : Water/cement ratio
Q : Minimum thickness of load bearing RCC wall should be:
A: 5 cm
B : 10 cm
C: 15 cm
D : 20 cm

Q : For wall column and vertical faces of all the structural members, the form work is generally removed after
A : After 24 to 48 hours,
B : After 3 days
C : After 7 days
D : After 14 days

Q : According to Whitney's theory, the maximum depth of concrete stress block in a balanced RCC beam section of depth 'd' is \qquad .
A: 0.3 d
B : 0.43 d
C: 0.5 d
D : 0.53 d

Q : The section of reinforced beam where most distant concrete fiber in compression and tension in steel attains permissible stresses simultaneously, called \qquad .
A : Balanced section
B : Economic section
C : Critical section
D : All option are correct

Q : Minimum thickness of main steel members, not exposed to weather is:
A : 4.5 mm
B : 6.0 mm
C : 8.0 mm
D: 8.5 mm

Q : According to IS : 800-1984, the permissible stress in axial tension in steel is:($\mathrm{f}_{\mathrm{y}}=$ minimum yield stress of steel)
A: $0.56 \mathrm{f}_{\mathrm{y}}$
B: $0.66 \mathrm{f}_{\mathrm{y}}$
C : $0.70 \mathrm{f}_{\mathrm{y}}$
D : 0.6f

Q : Fillet weld is not recommended if the angle between fusion faces is-
A. Less than 45°
B. Greater than 120°
C. Less than 60°
D. Greater than 145°

The correct statement are:
A:A\&B
B : A\&D
$C: C \& D$
D : C\&B

Q : Tacking rivets in a compression plates exposed to weather have a pitch not exceeding $\mathbf{2 0 0} \mathbf{~ m m}$ or

A : 8 times the thickness of outside plate
B : 16 times the thickness of out side plate
C : 24 times the thickness of out side plate
D : 32 times the thickness of outside plate
Q : A column splice is used to increase:
A : Length of column
B : Strength of column
C : Cross-sectional area of column
D : None of the above
Q : The plan of a building is in the from of square with centerline dimensions of outer walls as $14.7 \mathrm{~m} \times 14.7 \mathrm{~m}$. if the thickness of the wall in super structure is 0.30 m , then its plinth area is:

A : $234 \mathrm{~m}^{2}$
B : $150 \mathrm{~m}^{\mathbf{2}}$

C : $216 \mathrm{~m}^{2}$
D : $225 \mathrm{~m}^{\mathbf{2}}$
Q : The value of property during its useful life based on purchase value and depreciation etc.is Known as:

A: Junk value
B : Scrap value
C : Salvage value
D: Book value
Q : Thickness of plastering is usually:
A : 40 mm
B : 6 mm
C : 12 mm
D : $\mathbf{2 5} \mathbf{~ m m}$
Q : Using straight line method annual depreciation D is equal to:
A : $\frac{\text { Life in Year }- \text { Scrap value }}{\text { Original cost }}$
B : $\frac{\text { Scrap value }- \text { Life in Year }}{\text { Original cost }}$
C : $\frac{\text { Original cost }- \text { life in year }}{\text { Scrap value }}$
D : $\frac{\text { Original cost }- \text { Scrap value }}{\text { life in year }}$
Q : The plan of a building is in the from of a rectangle with centre line dimensions of the outer walls as $10.3 \mathrm{~m} \times 15.3 \mathrm{~m}$. The thickness of the walls in superstructure is 0.3 m . Then its carpet area is :

A: $150 \mathrm{~m}^{2}$
B : $\mathbf{1 5 7 . 5 9} \mathrm{m}^{\mathbf{2}}$
C : $165.36 \mathrm{~m}^{2}$
D : 170^{2}
Q : Pascal's law states that pressure at any point in a fluid at rest has:

A : Different magnitude in all directions.
B : Same magnitude in all directions.
C : Zero magnitude in all direction.
D: None of the above
Q : A rectangular plate $1.25 \mathrm{~m} \times 2.4 \mathrm{~m}$ is immersed in a liquid of relative density 0.85 with its 1.25 m side horizontal and just at the water surface. If the plane of the plate makes an angle of 60° with the horizontal, the pressure force on one side of the plate is:

A : $\mathbf{3 0 . 6} \mathrm{kN}$
B: $\mathbf{2 6 . 0} \mathrm{kN}$
C: 15.0 kN
D: 30.0 kN
Q : Measurement of pressure difference between two points is, generally done by using:

A : Venturimeter.
B : Pitot tube.
C : Differential manometer.
D : None of the above.
Q : The relationship between atmospheric pressure ($\mathrm{P}_{\mathrm{atm}}$), gauge pressure ($\mathrm{P}_{\text {gage }}$) and absolute pressure ($\mathrm{P}_{\text {abs }}$) is given by:
$\mathrm{A}: \mathrm{P}_{\mathrm{atm}}=\mathrm{P}_{\text {abs }}-\mathrm{P}_{\text {gauge }}$
$B: P_{\text {abs }}=P_{\text {gauge }}-P_{\text {atm }}$
$\mathrm{C}: \mathrm{P}_{\mathrm{abs}}=\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\text {gauge }}$
D : $\mathrm{Patm}_{\mathrm{atm}}=\mathrm{P}_{\text {abs }}+\mathrm{P}_{\text {gauge }}$
Q : Pressure in terms of meters of oil (specific gravity $=\mathbf{0 . 9}$) equivalent to 4.5 m of water is:

A : 4.05
B : 5

C : 3.6
D : 0.298

$$
\text { Mob. } 7827455078
$$

YouTube CHANNEL

