Q : For the structure shown, the elements of the flexibility matrix are:
[APPSC 2016]
$\mathbf{A}: f_{11}=\frac{l}{(E I)} ; f_{21}=\frac{l^{2}}{(2 E I)} ; f_{12}=\frac{l^{2}}{(2 E I)} ; f_{22}=\frac{l^{3}}{(3 E I)}$
B: $f_{11}=\frac{l^{3}}{(3 E I)} ; f_{21}=\frac{l^{2}}{(2 E I)} ; f_{12}=\frac{l^{2}}{(2 E I)} ; f_{22}=\frac{l}{(E I)}$
C : $f_{11}=\frac{l}{(E I)} ; f_{21}=\frac{l^{2}}{(E I)} ; f_{12}=\frac{l^{2}}{(E I)} ; f_{22}=\frac{l^{3}}{(3 E I)}$
$\mathrm{D}: f_{11}=\frac{l}{(E I)} ; f_{21}=\frac{l^{2}}{(2 E I)} ; f_{12}=\frac{l^{2}}{(2 E I)} ; f_{22}=\frac{l^{3}}{(4 E I)}$
Q : Three turbines each of capacity 10000 kW are installed at a hydel power station. If the peak load and the average load produced during a certain period are $\mathbf{2 5 0 0 0} \mathbf{~ k W}$ and 15000 kW respectively, then load factor and plant factor are respectively equal to:
[APPSC 2016]
A : 60\% and 50\%
B : 50\% and 60\%
C: 40\% and 50\%
D : 50\% and 40\%

Q: In a grillage footing the beams in each tier are spaced such that the minimum spacing between the flanges of the two consecutive beams is not less than:
[RPSC 2013]
A : 50 mm
B : 75 mm
C: 100 mm
D : $\mathbf{1 5 0} \mathbf{~ m m}$

Q : Dead weight of waist slab of a stair case spanning longitudinally is calculated as:
[MPSC 2015]
A: $25 D \sqrt{1+\left(\frac{R}{T}\right)^{2}}$
B: $25 d \sqrt{1+\left(\frac{R}{T}\right)^{2}}$
C: $25 D \sqrt{1+\left(\frac{T}{R}\right)^{2}}$
D : $25 d \sqrt{1+\left(\frac{T}{T}\right)^{2}}$
Q : The splice plate for the steel column is generally designed as [KPSC 2017]
A : Short column
B : Long column
C : Intermediate column
D : Based on slenderness ratio.

Q : For a hydraulically efficient rectangular channel of bed width 5 m , the hydraulic radius is equal to
[KPSC 2017]
A : 1.25 m
B: $\mathbf{2}$ m
C: 2.25 m
D: 1.75 m

Q:A 0.3 m diameter pipeline terminates in a nozzle of outlet diameter $=0.15 \mathrm{~m}$. The free jet from the nozzle is deflected through 90° by a flat plate as shown. When water flows through this pipe at a rate of 0.25 m^{3} /second, the force required to hold the plate is most nearly.

A : 880 N
B : 1760 N
C: 2640 N
D: 3530 N

Q : A rigid jointed plane frame as shown below will have:

[UKPSC 2013]
A : Sway to right
B : Sway to left
C : Not away
D : None of above.
Q : In the ' T ' section as shown in figure, distance of neutral axis from top is:

[UKPSC 2013]
A : $\mathbf{1 0 0} \mathbf{~ m m}$
B : $\mathbf{3 0 0} \mathrm{mm}$
C : 200 mm
D : 216 mm

Q : The rainfall on five successive days were measured as $100 \mathrm{~mm}, \mathbf{8 0}$ $\mathrm{mm}, 60 \mathrm{~mm}, \mathbf{4 0} \mathrm{~mm}$ and $\mathbf{2 0 ~ m m}$ respectively. If the infiltration index or the storm loss rate for the catchment area is earlier estimated as 50 $\mathrm{mm} /$ day, the total surface run off will be:
[RPSC 2013]
A : 50 mm
B : 60 mm
C : 90 mm
D : $\mathbf{1 4 0} \mathbf{~ m m}$

Q : What is the range of the speed ratio for a Francis Turbine?
[MPSC 2017]
A : 0.10 to 0.30
B : 0.60 to 0.90
C : 0.85 to 0.00
D : 1.40 to $\mathbf{2 . 2 5}$

Q : A straight bar which is fixed at the ends A and B and having elastic modulus (E) and cross-sectional area(A), is subjected to a load $P=120 \mathrm{~N}$ at C as shown in figure. The reactions at the ends are

[HPPSC 2016]
A: $\mathbf{4 0} \mathbf{N}$ at $\mathrm{A}, \mathbf{8 0} \mathbf{N}$ at B
B: $\mathbf{3 0} \mathbf{N}$ at $\mathrm{A}, 90 \mathbf{N}$ at B
C : $\mathbf{8 0} \mathbf{N}$ at $\mathrm{A}, \mathbf{4 0} \mathbf{N}$ at B
$D: 60 \mathrm{~N}$ at $\mathrm{A}, \mathbf{6 0} \mathrm{N}$ at B .

