SSC JE MAINS
 (CONVENTIONAL) TEST SERIES 2020

 oor \curvearrowright Total Test - 8 Tests noof ${ }^{\circ}$ Validitity - Till The Exam moos Start Date-20 June 2021
At Just Enroll Now

(TELEGRAM CHANNEL EVEREXAM TECH DOWNLOAD EVEREXAM APP

EVEREXAM INDIA'S BEST PLATFORM FOR CIVIL ENGINEERING

Start Date 1 June 2021
Duration 400+hours
Validity 5 Months
Free Question Practice Batch

SSL JP PRE2021

 CIVIL ENGINERRINGStart Date 15 June 2021
Duration 400+hours
Validity 6 Months

Limited Time Offer

SSC JE PRE 2021

RECORDED BATCH

ENROLL - TODAY

VALIDITY - 5 MONTHS
DURATION - 300+ HOURS
LIMITED OFFER

008595517959

Heartiest Congratulations To All Selected Candidates From EverExam

Mancesh Kumar
CPWD-2018

Kunal Panchal MES-2018

Vaihhav Gupta CPWD - 2018

Rajhhatur Prajapati BRO-2018

60+ Selection In Civil SSC JE 2018

Elves
\rightarrow STARTING \rightarrow VAUDITY
13 APRIL
5 MONTHS
ONIINE CLASSES

Everem

FOUNDATIONBATCD2021 AIL STITE AE/JE EUAMINATION [THEORY QUESTIOLS PRIGIIGE BAIGH

VALIDITY 1 YEAR

Hasese 다[3199/-

Loarn Moro. Earn More

BADASTHANIE
QUESTIONS PRACTICE BATCH
*-Starting 20 April 2021
톤 Duration 100 Hours eValidity 4 Months

Fee @399/-

RAMSTHMNIE

THEORY CLASSES

R- Recorded Class
눈 Duration 250 Hours灰 Validity 4 Months
[BCB 498/

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q : 1) The stress-strain curve for an ideally plastic material is

(b)

(d)

Q : 2) In terms of bulk modulus (K) and modulus of rigidity (G), the Poisson's ratio can be expressed as
A : (3K-4G)/(6K+4G)
B : (3K+4G)/(6K-4G)
C : (3K-2G)/(6K+2G)
D : (3K+2g)/(6K-4G)

Q:3) Two bars one of material A and the other of material B of same length are tightly secured between two unyielding walls. Coefficient of thermal expansion of bar A is more than that of B. When temperature rises the stresses induced are
A : Tension in both materials
B : Tension in material A and compression in material B
C : Compression in material A and tension in material B
D : Compression in both materials

Q : 4) When a mild-steel specimen fails in a torsion test, the fracture looks like

Q : 5) A bar of circular cross-section varies uniformly from a cross-section 2D to D. If extension of the bar is calculated treating it as a bar of average diameter, then the percentage error will be
A: 10
B : 25
C: 33.33
D : 50

SOM / 250+ QUESTIONS SERIES PART-2
Q:6) If the dimensions of prismatic bar of square cross-section suspended freely from the ceiling of a roof are doubled then the total elongation produced by its own weight will increase
A : Eight times
B : Four times
C : Three times
D : Two times

SOM / 250+ QUESTIONS SERIES PART-2
Q:7) A prismatic bar of uniform crosssectional area of $5 \mathrm{~cm}^{2}$ is subjected to axial loads as shown in the given figure.

Portion BC is subjected to an axial stress of
A : $400 \mathrm{~kg} / \mathrm{cm}^{2}$ tension
B : $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ compression
C : $1000 \mathrm{~kg} / \mathrm{cm}^{2}$ tension
D : $600 \mathrm{~kg} / \mathrm{cm}^{2}$ tension

SOM / 250+ QUESTIONS SERIES PART-2

For Any Query Call - 8595517959 | Website - everexam.org
Q : 8) If ' A ' be the area of cross-section of a bar, the gauge length for the measurement of ductility will be
A : $5.65 \times \mathrm{A}^{1 / 2}$
B : $5.65 \times \mathrm{A}$
C : $6.56 \times \mathrm{A}^{1 / 2}$
D : $6.56 \times \mathrm{A}$

SOM / 250+ QUESTIONS SERIES PART-2

For Any Query Call - 8595517959 | Website - everexam.org
Q : 9) Match List-I with List-II and select the correct answer

List I	List II
A. Ductility	1. Failure without warning
B. Brittleness	2. Drawn permanently over great
changes of shape without rupture	
C. Tenacity	3. Absorption of energy at high stress without rupture
D. Toughness	4. High tensile strength

Codes:
A: 1, 2, 4, 3
B : 1, 2, 3, 4
C : 2, 3, 4, 1
D: 2, 1, 4, 3

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q : 10) High yield deformed bars have a
A : Definite yield value
B : Chemical composition different from mild steel
C : Percentage elongation less than that of mild steel
D : Percentage elongation more than that of mild steel

Q:11) If a member is subjected to tensile stress of σ_{x}, compressive stress of σ_{y} and tensile stress of σ_{z} along the \mathbf{x}, \mathbf{y} and z directions respectively, then the resultant strain ' e_{x} ' along the ' x ' direction would be (E young's modulus of elasticity, μ is Poisson's ration)
$\mathrm{A}: 1 / \mathrm{E}\left(\sigma_{x}+\mu \sigma_{y^{-}} \mu \sigma_{z}\right)$
B : $1 / \mathrm{E}\left(\sigma_{x}+\mu \sigma_{y}+\mu \sigma_{z}\right)$
C : $1 / E\left(\sigma_{x}-\mu \sigma_{y}+\mu \sigma_{z}\right)$
$\mathrm{D}: 1 / \mathrm{E}\left(\sigma_{x}-\mu \sigma_{y^{-}} \mu \sigma_{z}\right)$

Q:12) A square plate ($a \times a$) rigidly held at three edges is free to move along the fourth edge. If temperature of the plate is raised by temperature ' t '. Then the free expansion at the fourth edge will be (coefficient of thermal expansion of the material = $\boldsymbol{\alpha}$, modulus of elasticity of the material $=\mathrm{E}$ and its Poisson ratio $=\mu$)
A: a $\boldsymbol{\alpha} \boldsymbol{t} \boldsymbol{\mu}$
B: a $\boldsymbol{\alpha}(1+\mu)$
C : a $\boldsymbol{\alpha} \mathrm{t}+\left(\frac{\alpha \mathrm{t} \mu}{E}\right)$
D: a $\boldsymbol{\alpha} \mathbf{t}(1-\mu)$

List I	List II
A. Young's	1. Lateral strain to
\quad modulus	linear strain within
B. Poisson's ratio	elastic limit
C. Bulk modulus	2. Stress to strain
D. Rigidity	
modulus	3. Shear stastic limit
	shear strain within
	elastic limit
	4. Direct stress to
	corresponding
	volumetric strain

Q : 13) Match List-I (Elastic constant) with List-II (Definition) and select the correct answer:

Codes:
A : 3, 1, 4, 2
B : 2, 1, 4, 3
C: 2, 4, 1, 3
D: 3, 4, 1, 2

SOM / 250+ QUESTIONS SERIES PART-2

Q : 14) A member having length L, crosssectional areas A and modulus of elasticity E is subjected to an axial load \mathbf{W}. The strain energy stored in this member is

A: WL ${ }^{2} / \mathbf{A E}$
B : WL ${ }^{2} / 2 A E$
C: $W^{2} L / 2 A E$
D : W²L/AE

Q : 15) The principal strain at a point are $+800 \times 10^{-6} \mathrm{~cm} / \mathrm{cm},+400 \times 10^{-6} \mathrm{~cm} / \mathrm{cm}$ and $-1200 \times 10^{-6} \mathrm{~cm} / \mathrm{cm}$. The volumetric strain is equal to
A : + 1200×10^{-6}
B : $+\mathbf{8 0 0} \times \mathbf{1 0}^{-6} \mathbf{~ c m} / \mathrm{cm}$
C : $-1200 \times 10^{-6} \mathrm{~cm} / \mathrm{cm}$
D: Zero

SOM / 250+ QUESTIONS SERIES PART-2
Q : 16) The failure surface of a standard cast iron torsion specimen, subjected to a torque is along
A : The surface helicoidal at 45° to the axis of the specimen
B : The curved surface at the grips
C : The plane surface perpendicular to the axis of the specimen
D: The curved surface perpendicular to the axis of the specimen

Q:17) A stepped column carries loads as shown in the figure. What is the maximum normal stress in the column at B in the larger diameter column?
$\mathrm{A}: \frac{P}{1.5 A}$
B: $\frac{P}{A}$
C : $\frac{2 P}{1.5 A}$
D : $\frac{P}{1.5 A}$

Q:18) What is the nature of stress in a ceiling fan rod?
A : Bending
B : Tensile
C : Compressive
D: Shear

SOM / 250+ QUESTIONS SERIES PART-2

Q : 19) For a material having modulus of elasticity equal to 208 GPa and Poisson's ratio equal to 0.3 , what is the modulus of rigidity?
A : 74.0 GPa
B : 80.0 GPa
C : 100.0 GPa
D : 128.5 GPa

SOM / 250+ QUESTIONS SERIES PART-2

Q: 20) Given E as the Young's modulus of elasticity of a material, what can be the minimum value of its bulk modulus of elasticity?
A : E/2
B: E/3
C : E/4
D: E/5

Q : 21) Poisson's ratio is defined as the ratio of
A : Longitudinal strain and longitudinal strain
B : Lateral strain and longitudinal strain
C : Longitudinal stress and lateral stress
D : Lateral stress and longitudinal stress

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q : 22) A prismatic bar ABC is subjected to an axial load of $\mathbf{2 5} \mathbf{k N}$; the reactions R_{A} and R_{c} will be

$A: R_{A}=-10 \mathrm{KN}$ and $R_{C}=-15 \mathrm{kN}$
$B: R_{A}=10 \mathrm{KN}$ and $R_{C}=-35 \mathrm{kN}$
$C: R_{A}=-15 \mathrm{KN}$ and $R_{C}=-10 \mathrm{kN}$
$D: R_{A}=15 \mathrm{KN}$ and $R_{C}=-40 \mathrm{kN}$

Q : 23) Consider the following salient points in a stress-strain curve of a mild steel bar:

1. Yield point 2. Braking point
2. Yield plateau
3. Proportionality limit

5. Ultimate point

The correct sequence in which they occur while testing the mild steel bar in tension from initial zero strain to failure is
A: 4, 1, 2, 3 and 5
B: 1, 4, 3, 5 and 2
C: 4, 1, 3, 5 and 2
D: 1, 4, 2, 3 and 5

The resistive force in the part BC is
A : 365 (compressive)
B : 450 (tensile)
C : 85 (Compressive)
D : 320 (Compressive)

Q: 25) The symmetry of the stress tensor at a point in a body when at equilibrium is obtained from
A : Conservation of mass
B : Force equilibrium equations
C : Moment equilibrium equations
D : Conservation of energy

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q:26) Statement (1): There are two independent elastic constants for an isotropic material.
Statement (II): All metals at micro-level are isotropic.

Q : 27) For a block with Young's modulus of its material being 210 GPa and its Poisson's Ratio being 0.25, when subjected to a stress system as shown in the figure, what is the magnitude of the stress σ for no strain along $A B$?
A: $30 \mathrm{~N} / \mathrm{mm}^{2}$
B : $60 \mathrm{~N} / \mathrm{mm}^{2}$
C : $120 \mathrm{~N} / \mathrm{mm}^{2}$

D : $\mathbf{2 4 0} \mathrm{N} / \mathrm{mm}^{\mathbf{2}}$

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q : 28) Consider the following statements:

1. In the infinitesimal strain theory, dilatation is taken as an invariant.
2. Dilatation is not proportional to the algebraic sum of all normal stresses.
3. The shearing modulus is always less than the elastic modulus.
Which of the above statements is/are correct?
A : 1 only
B : 1 and 2 only
C : 2 only
D : 1, 2 and 3

SOM / 250+ QUESTIONS SERIES PART-2

Q : 29) What is the stress at the section x
$-x$ for the bar ABCD with uniform crosssection $1000 \mathrm{~mm}^{2}$?

A : $20 \mathrm{~N} / \mathrm{mm}^{2}$ (Tensile)
B : $30 \mathrm{~N} / \mathrm{mm}^{2}$ (Compressive)
C : $80 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile)
D : $50 \mathrm{~N} / \mathrm{mm}^{2}$ (Compressive)

Q : 30) The total elongation of the structural element (fixed at one end, free at the other end, and of varying crosssection) as shown in the figure, when subjected to load 2P at the free end is
A : $6.66 \frac{P l}{A E}$
B : $5.55 \frac{P l}{A E}$
$C: 4.44 \frac{P l}{A E}$
D : $3.33 \frac{P l}{A E}$

SOM / 250+ QUESTIONS SERIES PART-2
Q : 31) In mild steel specimens subjected to tensile test cycle, the elastic limit in tension is raised and the elastic limit in compression is lowered, this is called
A : Annealing effect
B : Bauschinger effect
C : Strain rate effect
D : Fatigue effect

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q : 32) A solid uniform metal bar of diameter D mm and length I mm hangs vertically from its upper end.
The density of the material is $\rho N / \mathrm{mm}^{3}$ and its modulus of elastic is $\mathrm{EN} / \mathrm{mm}^{2}$. The total extension of the rod due to its own weight would be

> A: $\frac{\rho l^{2}}{2 E}$
> B $: \frac{\rho t}{2 E}$
> C $: \frac{\rho l}{4 E}$
> D $: \frac{\rho l^{2}}{4 E}$

Q:33) A bar of uniform rectangular section of area A is subjected to an axial tensile load P; its Young's modulus is E and its Poisson's ratio is $\frac{1}{m}$. Its volumetric strain, \in_{v} is
A: $\frac{P}{A E}\left(1+\frac{3}{m}\right)$
B : $\frac{P}{A E}\left(1+\frac{2}{m}\right)$
C : $\frac{P}{A E}\left(1-\frac{2}{m}\right)$
$\mathrm{D}: \frac{P}{A E}\left(1-\frac{1}{2 m}\right)$

SOM / 250+ QUESTIONS SERIES PART-2

Q : 34) A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load of $30 \mathbf{k N}$. If Poisson's ratio is $\mathbf{0 . 2 5}$ and Young's modulus is 200 GPa , an increase in volume will be
A : $160 \mathrm{~mm}^{3}$
B : $150 \mathrm{~mm}^{3}$
C : $140 \mathrm{~mm}^{3}$
D : $130 \mathrm{~mm}^{\mathbf{3}}$

SOM / 250+ QUESTIONS SERIES PART-2
Q : 35) A tie bar $50 \mathrm{~mm} \times 8 \mathrm{~mm}$ is to carry a load of 80 kN . A specimen of same quality steel of cross-sectional area is 250 mm^{2}. If the maximum load carried by the specimen is 125 kN , the gauge length will be
A : 133 mm
B : 126 mm
C : 113 mm
D : 106 mm

SOM / 250+ QUESTIONS SERIES PART-2
For Any Query Call - 8595517959 | Website - everexam.org
Q:36) The number of independent elastic constant for a linear elastic isotropic and homogeneous material is
A: 4
B : 3
C: 2
D : 1

SOM / 250+ QUESTIONS SERIES PART-2

Q : 37) For an isotropic material, he relationship between the young's modulus (E), shear modulus (G) and Poisson's ratio (μ) is given by
$\mathrm{A}: \mathrm{G}=\frac{E}{(1+\mu)}$
$\mathrm{B}: \mathbf{G}=\frac{E}{2(1+\mu)}$
$C: G=\frac{E}{(1+2 \mu)}$
$\mathrm{D}: \mathrm{G}=\frac{E}{2(1+2 \mu)}$

SOM / 250+ QUESTIONS SERIES PART-2
Q : 38) The necessary and sufficient condition for a surface to be called as a free surface is

A : No stress should be acting on it
B : tensile stress acting on it must be zero
C : Shear stress acting on it must be zero
D : No point on it should be under any stress

SOM / 250+ QUESTIONS SERIES PART-2

Q:39) The components of strain tensor at a point in the plane strain case can be obtained by measuring longitudinal strain in following directions:
A : Along any two arbitrary directions
B : Along any three arbitrary directions
C : Along two mutually orthogonal directions
D : Along any arbitrary direction materials A and B is shown below:
The following statements are made based on this diagram
(i) Material A is more brittle than material B
(ii) The ultimate strength of material B is more than that of A
With reference to the above statements, which of the following applies?
A : Both the statements are false
B : Both the statements are true
C: I is true but II is false
D : I is false but II is true

Q : 41) The maximum value of Poisson's ratio for an elastic material is

A: 0.25
B : 0.5
C : 0.75
D: 1.0

SOM / 250+ QUESTIONS SERIES PART-2

Q:42) The principle of super position is made use of in structural computations when:
A : The geometry of the structure changes by a finite amount during the application of the loads
B : The changes in the geometry of the structure during the application of the loads is too small and the strains in the structure are directly proportional to the corresponding stresses.
C : The strain in the structure are not directly proportional to the corresponding stresses, even the effect of changes in geometry can be neglected.
D : None of the above conditions are met.

Q: 43) A tapered circular rod of diameter varying from 20 mm to $\mathbf{1 0 ~ \mathbf { ~ m m }}$ is connected to another uniform circular rod of diameter 10 mm as shown in the following figure. Both bars are made of same material with the modulus of elasticity, $\mathrm{E}=2 \times 10^{5} \mathrm{Mpa}$. When subjected to a laod $\mathrm{P}=30 \pi \mathrm{kN}$, the deflection at poinbt A is \qquad mm.

SOM / 250+ QUESTIONS SERIES PART-2
Q : 44) The total elongation of the structural element fixed, at one end, free at the other end, and of varying crosssection as shown in the figure when subjected to a force P at free end is given by
A : PL/AE
B : 3 PL/AE
C : 2.5 PL/AE
D : 2 PL/AE

Q: 45) The axial movement of top
surface of stepped column as shown in figure is
A : 2.5 PL/AE
B : 3 PL/AE
C : $1.5 \mathrm{PL} / \mathrm{AE}$
D : 2 PL/AE

Heartiest Conquatulations To All Selected Candidates From EverExam

ALL STATE JE /AE RESULT

Vaibhay RRB JE PATNA

Amernidra RRB JE KOLKATA

Degrak RRB JE ALLAHABAD

Satyam Gupta UPPSC AE

Gaurvendra RRB JE ALLAHABAD

Praveen RRB JE CHENNAI

Shuhham RRB JE GUWAHATI

