

Telegram Channel | Telegram Channel | DOWNLOAD |
| :--- | :---: |
| EVEREXAM TECH | EVEREXAM APP |

Q :) If two triangulation signals of 6.75 m height each are to be just visible over ground mutually, what is the maximum distance between their locations on the ground surface?
A : 10 km
B : $\mathbf{2 0}$ km
C : 30 km
D : 50 km

Q :) The ratio of curvature correction to that of refraction is

A: 3
B : 12
C: 14
D : 7
$\mathrm{Q}:$) In a vertical curve, an upgrade of 2.0% is followed by a downgrade of 2.0%. The rate of change of grade is 0.05% per 20 m chain. The length of the vertical curve will be A : 800 m
B : 1000 m
C : 1200 m
D : 1600 m

Q :) The velocity distribution in turbulent flow is a function of the distance ' y ' measured from the boundary surface and the friction velocity μ and follows a A : Parabolic law
B : Hyperbolic law
C: Logarithmic law
D : Linear law

Q :) While conducting flow measurement using a rectangular notch, an error of 2% in head over the notch and error of 3\% in the length was observed. The percentage error in the computed discharge would be
A : +6\%
B : -1\%
C : -2.5\%
D : Zero

Q :) A channel designed by Lacey's
theory has a mean velocity of $1 \mathrm{~m} / \mathrm{s}$ and silt factor of unity. The hydraulic mean radius will be
A: 2.5 m
B : 2 m
C: 1 m
D : 0.5 m

Q :) A pipe is said to be equivalent to another if, in both A : Length and discharge are the same B : Velocity and diameter are the same C : Discharge and frictional head loss are the same
D : Length and diameter are the same

Q :) The pressure drop per unit length of pipe ($\Delta \mathrm{P} / \mathrm{L}$) in Laminar flow is dependent on the velocity, viscosity and diameter. It is equal to
(a) $\frac{d^{2}}{32 \mu \mathrm{~V}}$
(b) $\frac{32 \mu \mathrm{VL}}{\gamma \mathrm{d}^{2}}$
(c) $\frac{32 \mu V}{d^{2}}$
(d) $\frac{8 \mu V}{d^{2}}$

Q :) The ratio of pressures between the two points A and B located respectively at depth 0.25 m and 0.75 m below a constant level of water in a tank is
A: 1:2
B: $1: 3$
C: $1: 4$
D:1:5

Q :) A circular plate 1 m in diameter is submerged vertically in water such that its upper edge is $\mathbf{8 ~ m}$ below the free surface of water. The total hydrostatic pressure force on one side of the plate is
A : 6.7 kN
B : 65.4 kN
C : 45.0 kN
D : 77.0 kN

Q :) A turbine in which the total energy of water available is converted to kinetic energy is called A : Axial flow turbine B : Reaction turbine C : Impulse turbine D : Mixed flow turbine

Q :) Discharge per unit drawn down

 at a well is called A : Specific storage B : Specific yield C : Specific capacity D : None of the above
Q :) For one-dimensional flow without

 recharge in unconfined aquifer between two water bodies, the steady water table profilesA : A straight line
B : A parabola
C : An ellipse
D : An arc of a circle

Q :) As per the recommendation of the Bureau of Indian Standards, the shape of the lined canal is
 A : Circular
 B : Trapezoidal
 C : Parabolic
 D : Elliptic

Q :) The standard BOD_{5} at $20^{\circ} \mathrm{C}$, when compared to $B O D_{u}$ is
 A : 50\%
 B : 68\%
 C : 75\%
 D : 100\%

Q :) Sludge bulking can be controlled

by
A : Chlorination
B : Coagulation
C : Aeration
D : Denitrification

Q :) Uniformity coefficient of filter

 sand is given byA : $D_{60} D_{5}$
B : $\mathrm{D}_{50} / \mathrm{D}_{5}$
C: D_{50} / D_{10}
D : $\mathrm{D}_{60} / \mathrm{D}_{10}$

Q :) Which of the following causes a

 decrease demand of water in per capita consumption ?A : Use of metering system
B : Good quality of water
C : Better standard of living of the people
D : Hotter climate

Q :) The following data pertain to a sewage sample :
Initial DO = $9.5 \mathrm{mg} / \mathrm{L}$;
final DO = $2 \mathrm{mg} / \mathrm{L}$; Dilution = 1\%
The BOD of the given sample is
A : $7.5 \mathrm{mg} / \mathrm{L}$
B : $10 \mathrm{mg} / \mathrm{L}$
C : $75 \mathrm{mg} / \mathrm{L}$
D : $750 \mathrm{mg} / \mathrm{L}$

Q :) An Engineer measured the distance between two locations on a plan having a scale of $1 \mathrm{~cm}=50$ m as 600 m . Later, however, he found that he used a wrong scale of $1 \mathrm{~cm}=30 \mathrm{~m}$ to measure the distance. The true distance between the locations is
A : 200 m
B : 250 m
C : 500 m
D : 1000 m
Q :) If the probable error in single observation is $\pm 0.04 \mathrm{~m}$ and that of the mean is $\pm 0.01 \mathrm{~m}$, then the number of observations are
A: 4
B : 10
C : 16
D : 64

Q :) Two straights $A B$ and $B C$ have the

 bearing of 70° and 120° respectively. They are to be connected by a circular curve. The deflection angle will beA : 130°
B : 70 ${ }^{\circ}$
C : 50 ${ }^{\circ}$
D : 120

Q :) The following boundary condition exists at the wall $(y=0)$ in a boundary layer.
 $\mathbf{A}: \mathbf{u}=\mathbf{U}$
 B : (dP/dX)=-ve
 C : $\tau_{0}=0$
 D : u = 0, v = 0

Q :) Uniform flow in an open channel exists, when the flow is steady and the channel is
A : Prismatic
B : Non-prismatic and depth of flow is constant along the channel
C : Prismatic and depth of flow is constant along the channel
D : Frictionless

Q :) For a hydraulically efficient

 rectangular channel section, the ratio of width to normal depth isA : 0.5
B : 1.0
C: 23
D : 2.0

Q :) As the depth of immersion of a vertical plane surface increases, the location of centre of pressure
A : Moves apart from the centre of gravity of the area
B : Comes closer to the centre of gravity of the area
C : Coincide with the centre of gravity of the area
D : Remains unaffected

Q :) In differential manometer used in a venturimeter along a water pipeline, if an error of 2 mm has been made in observing a differential head of 10 mm , the percentage error in pressure difference is
A : 12.6
B : 25.2
C : 20
D : 10

Q :) With rise in pressure, the bulk modulus of liquid A : Remains constant B : Increases
 C : Decreases
 D : None of the above

Q :) When an irrigation canal is taken

 over a drainage channel the crossing is calledA : An aqueduct
B : A super passage
C : A level crossing
D : None of the above

Q :) Lacey’s scour depth for a stream, carrying a discharge of 3 cumecs per meter width and having a silt factor 1.2 is
A : 1.32 m
B : 2.64 m
C : 3.96 m
D : 4.32 m

Q :) The discharge passing over an ogee spillway, per unit length of its apex line is proportional to (where H is head over the apex of its crest)
A: H
$B: H^{2}$
$\mathrm{C}: \mathrm{H}^{1 / 2}$
$D: H^{3 / 2}$

Q :) Lysimeter is an instrument used to

 measureA : Evaporation
B : Infiltration
C : Evapotranspiration
D : Transpiration

Q :) The relation between duty D in hectares/ cumec, depth of water ${ }^{\text {Q }}$ in meter and base period B in days is given by

(a) $\Delta=\frac{1.98 \mathrm{~B}}{\mathrm{D}}$
(b) $\Delta=\frac{8.64 \mathrm{~B}}{\mathrm{D}}$
(c) $\Delta=\frac{5.68 \mathrm{~B}}{\mathrm{D}}$
(d) $\Delta=\frac{8.64 \mathrm{D}}{\mathrm{B}}$

Q :) The use of unit hydrographs for estimating floods is generally limited to catchments of size less than
 A : $5000 \mathrm{Km}^{2}$
 B : $500 \mathrm{Km}^{2}$
 C : $106 \mathrm{Km}^{2}$
 D : 5000 ha

Q :) According to Khosla, to keep the structure safe against piping, exit gradient to be provided lies between A : 0.10 and 0.15
B : 0.15 and 0.20
C : 0.20 and 0.26
D : 0.25 and 0.30

Everition
 Has Launched New Course SSC JE PRE 2020\%

PDF Notes

At Just $=52199$ with Fres $3010+$ Question Practice Batch

Q :) Determine the slope and

 deflection at the free of the cantilever loaded as shown in the figure. Take I = $10,000 \mathrm{~cm}^{4}$ and $\mathrm{E}=2.1 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$Q :) The cross-section of a joist is a Tsection, $120 \mathrm{~mm} \times 200 \mathrm{~mm} \times 12 \mathrm{~mm}$, with 120 mm side horizontal, sketch the shear stress distribution and hence find the maximum shear stress if it has to resist a shear force of 200 kN . [SSC JE - 08-04-2012 : 15 marks]

Q :) For the I-section shown in figure determine the position of centroid and moment of inertia about the base flange (I_{KL})

