CIVIL ENGINEERING

DPPSAAE

OBJEGTIVE QUESTION PRAGTICE PROGRAM

1500 ＋questions

COURSE DURATION：－ $100+H R S$

APPLY ONLINE
FOR ENQUIRY：－ 8595517959

Q:) The discharge of water through a rectangular channel of width 8 m is 15 $\mathrm{m}^{3} / \mathrm{sec}$ when the depth of flow of water is 1.2 m . The specific energy of the follwing water is
A : 1.324 m
B : 2.824 m
C : 3.124 m
D : 4.123 m

Q:) The S-curve is the summation of
A : Unit hydrograph B : Total runoff hydrograph C : Effective rainfall hyetograph D : Base flow curve

Q:) The number of wire in Magnel cable varies between
A : 2 to 64
B : 10 to 100
C : 20 to 120
D : 8 to 78

Q:) The section factor of a rectangular channel section of width ' B^{\prime} and depth of flow 'Y' is given by
$\mathrm{A}: \mathrm{B}(\mathrm{y})^{0.5}$
$\mathrm{B}: \mathrm{B}(\mathrm{y})^{1.5}$
$\mathrm{C}: \mathrm{B}(\mathrm{y})^{2.5}$
$\mathrm{D}: \mathrm{B}(\mathrm{y})^{3.5}$

Q:) The weir is always aligned at right angle to the direction of the river flow because A : it ensure less length of weir
B : it gives good discharging capacity
C : it is economical
D : it ensure less length, good discharge and economical

Q:) The vertical depth of the centre of pressure, h for the inclined plane surface below the free surface of the liquid is

$$
\mathrm{A}: \bar{x}-\frac{I_{G} \sin \theta}{A}
$$

$$
\mathrm{B}: \bar{x}+\frac{I_{C} \sin ^{2} \theta}{A x^{2}}
$$

$\mathrm{C}: \bar{x}+\frac{I_{C} \sin ^{2} \theta}{A x}$

$$
\mathrm{D}: \bar{x}-\frac{I_{C} \sin ^{2} \theta}{A}
$$

Q:) The force exerted by the fluid on a pipe bend for x direction, Rx is given a
$\mathrm{A}:\left(P_{1} A_{1}\right)_{x}-\left(P_{2} A_{2}\right)_{x}-\int Q\left(V_{2 x}-V_{1 x}\right)$
B : $\left(P_{1} A_{1}\right)_{x}+\left(P_{2} A_{2}\right)_{x}+\int Q\left(V_{2 x}-V_{1 x}\right)$
$\mathrm{C}:\left(P_{1} A_{1}\right)_{x}-\left(P_{2} A_{2}\right)_{x}-\int Q_{2}^{2}\left(V_{1 x}-V_{2 x}\right)$
D : $\left(P_{1} A_{1}\right)_{x}+\left(P_{2} A_{2}\right)_{x}$

Q:) The path traced by a single particle of smoke issuing from a incense stick is a
A : stream line
B : flow line
C : path line
D : streak line

Q:) Which of the following has the highest infiltration capacity?
A : Rock out crop
B : Concrete pavement in airport
C : Grazed pasture
D : Forest land

Q:) Selection of gauge depends on A : Type of sleeper and ballast B : Points and crossing C : Traffic volume and speed D : Rail strength and rainfall

Q:) The number of sleepers required for constructing 500 m long railway track, using sleeper density of M + 5 and rail length of 10 m
A: 500
B : 750
C : 600
D: 650

Q:) If the activity A proceeds B, but succeeds C then network is
A:

B :

C :

D:

Q:) The carpet area of a residential building may be of plinth area. A : 15\% to 30\% B : 30\% to 40\% C : 40\% to 50\% D : 50\% to 65\%

Q:) Select the number of type of construction according to fire resistance properties as per National building code of India
A: 4
B : 5
C: 6
D: 7

Q:) Shear stress on a principal plane is A: Maximum
B: Zero
C : Minimum
D : Maximum or Minimum

Q:) The bending moment on a section of a beam is maximum where shearing force is
A : Zero (or) changing sign
B : Minimum
C : Maximum
D : Any value

Q:) The bending moment diagram for the case shown in figure below will be as shown in figure.

$C:$

D:

Q:) Design of shaft made of brittle materials is based on A: Guest's theory
B : St. Venant's theory
C : Rankine's theory
D : Von Mises theory

Q:) Which one of the following method is convenient for determining deflection of beam of non uniform flexural rigidity?
A : Macaulay's method
B : Conjugate beam method
C : Moment area method
D : Double integration method

Q:) If the normal cross-section A of a member is subjected to tensile force P, the resulting normal stress in an oblique plane inclined at angle " 9 " to the transverse plane will be

$$
\begin{aligned}
& \text { A }: \frac{P}{A} \sin ^{2} \theta \\
& \text { B }: \frac{P}{A} \cos ^{2} \theta \\
& \text { C }: \frac{P}{2 A} \sin ^{2} \theta
\end{aligned}
$$

$$
\mathrm{D}: \frac{P}{2 A} \cos ^{2} \theta
$$

Q:) If a circular shaft is Subjected to both torque T and bending moment M . Then the equivalent bending moment M^{e} is given by

$$
\mathrm{A}: M_{e}=\frac{M+\sqrt{M^{2}+T^{2}}}{2}
$$

$$
\mathbf{B}: M_{e}=M+\sqrt{\frac{M^{2}+T^{2}}{2}}
$$

$$
\mathbf{c}: M_{e}=M-\sqrt{\frac{M^{2}+T^{2}}{2}}
$$

$$
\mathrm{D}: M_{e}=\frac{M-\sqrt{M^{2}+T^{2}}}{2}
$$

GIVIL ENGINIEBRING

OPTIONAL PAPER
OBJECTIVE QUESTION PRACTICE PROGRAM 1500 + QUESTIONS

COURSE DURATION

Telegram Channel
EVEREXAM TECH
Ansism

