CIVIL ENGINEERING

DPPSAAE

OBJEGTIVE QUESTION PRAGTICE PROGRAM

1500 ＋questions

COURSE DURATION：－ $100+H R S$

APPLY ONLINE
FOR ENQUIRY：－ 8595517959

YOUTUBE QUESTIONS PRACTICE

STRENGTH OF MAJERIAL

COMBINED STRESSES

Q :) A circular shaft can transmit a torque of 5 KN -m.If the torque is torque to $4 \mathrm{KN}-\mathrm{m}$, then the maximum value of bending moment that can be applied to the shaft is
A : $1 \mathrm{KN}-\mathrm{m}$
B: $2 \mathrm{KN}-\mathrm{m}$
C: $3 \mathrm{KN}-\mathrm{m}$
D: $4 \mathrm{KN}-\mathrm{m}$

Q :) strain energy per unit volume of a solid circular shaft φ under axial tension is

$$
\begin{aligned}
& \text { A: }: \frac{\sigma^{2}}{8 E} \\
& \text { B }: \frac{\sigma^{2}}{16 E} \\
& \text { C }: \frac{\sigma^{2}}{2 E} \\
& \text { D }: \frac{\sigma^{2}}{4 E}
\end{aligned}
$$

Q :) Two shafts of same length and material are joined in series. If the ratio of their diameters is 2 , then the ratio angle of twist will be-
A: 2
B: 4
C : 8
D: 16

Q :) For a hollow shaft of external and internal diameters 10 cm and 5 cm respectively, the torsional sectional modulus will be approximately-
A : 184 cm3cm3
B : 275 cm 3 cm 3
C : 368 cm 3 cm 3
D : 536 cm 3

Q :) A rectangular bar has been subjected to torsion. The maximum shear stress will occur \qquad -
A: At the centre
B : At the corner
C : At the middle of longer side
D : Along the diagonal

Q :) At a point a structure, there are two mutually perpendicular tensile stresses of $800 \mathrm{~kg} / \mathrm{cm}^{2}$ and 400 $\mathrm{kg} / \mathrm{cm}^{2}$. If the poisson's ratio is $\mu=0.25$ what would be the equivalent stress in simple tension according to maximum principal strain theory
a. $1200 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{e}$ b. $1200 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{e}$ c. $1200 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{e}$ d. $1200 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{e}$

Q :) According to maximum shear stress failure criterion, yielding in material occurs when a. Maximum shear stress $=1 / 2 \times$ yield stress
b. Maximum shear stress $=\mathbf{V} \mathbf{2} \times$ yield stress c. Maximum shear stress $=\mathbf{V} 2 / 3 \times$ yield stress
d. Maximum shear stress $=\mathbf{2} \times$ yield stress

Q :) A rectangular block of size $200 \mathrm{~mm} \times 100 \mathrm{~mm} \times$ 50 mm is subjected a shear stress of $500 \mathrm{~kg} / \mathrm{cm}^{2}$. If the modulus of rigidity of the material is $1 \times 10^{-6} \mathrm{~kg} / \mathrm{cm}^{2}$ the strain energy stored will be
a. 1000 kg cm
b. 500 kg cm
c. 125 kg cm
d. 10 kg cm

Q :) A shaft is subjected to a bending moment M and a torque T . the equivalent bending moment ${ }^{\mathbf{~}} \mathrm{M}_{\text {eq }}$ ' on the shaft is given by
A. $\frac{M+\sqrt{M^{2}+T^{2}}}{4}$
B. $\frac{M^{2}+\sqrt{M+T}}{2}$
C. $\frac{M-\sqrt{ } M^{2}+T^{2}}{2}$
D. $\frac{M+\sqrt{ } M^{2}+T^{2}}{2}$

Q :) A certain steel has proportionality limit of 3000 kg $/ \mathrm{cm}^{2}$ in simple tension. It is subjected to principal stresses of $1200 \mathrm{~kg} / \mathrm{cm}^{2}$ (tensile) $\mathbf{6 0 0} \mathbf{~ k g} / \mathrm{cm}^{2}$ (tensile) and $300 \mathrm{~kg} / \mathrm{cm}^{2}$ (compressive) the factor or safety according to maximum shear theory is
a. 1.50
b. 1.75
c. 1.80
d. 2.00

Q :) A Circular shaft is subjected to a twisting moment T. and bending moment \mathbf{M}. the ratio of maximum bending stress to shear stress is given by

$$
\begin{aligned}
& \text { A. } \frac{2 M}{T} \\
& \text { B. } \frac{M}{T} \\
& \text { C. } \frac{2 T}{M} \\
& \text { D. } \frac{M}{2 T}
\end{aligned}
$$

Q : A section of a solid circular shaft with diameter D is subjected to bending moment M and torque T. the expression for maximum principal stress at the section is
A. $\frac{2 M+T}{\pi D^{3}}$
B. $\frac{16 \pi}{D^{3}}\left(M+\sqrt{M^{2}+T^{2}}\right)$
C. $\frac{16 \pi}{D^{3}}\left(\sqrt{M^{2}+T^{2}}\right)$
D. $\frac{16}{\pi D^{3}}\left(M+\sqrt{M^{2}+T^{2}}\right)$

Q :) A material of young's modulus ' E ' and poisson's ratio ' μ ' is subjected to two principal stress σ_{1} and σ_{2} at a point in a two dimensional stress system. The strain energy per unit volume of the material is
A. $\frac{1}{2 E}\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \mu \sigma_{1} \sigma_{2}\right)$
B. $\frac{1}{2 E}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+2 \mu \sigma_{1} \sigma_{2}\right)$
C. $\frac{1}{2 E}\left(\sigma_{1}^{2}-\sigma_{2}^{2}+2 \mu \sigma_{1} \sigma_{2}\right)$
D. $\frac{1}{2 E}\left(\sigma_{1}^{2}-\sigma_{2}^{2}-2 \mu \sigma_{1} \sigma_{2}\right)$

Q :) A reinforced cement concrete footing as shown in fig. 10.9 carries a concentrated load at p so to produce maximum

Bending stresses due to eccentricities about $\mathbf{x - x}$ axis and $\mathbf{y}-\mathbf{y}$ axis $100 \mathrm{kN} / \mathrm{m}^{2}$ and $150 \mathrm{kN} / \mathrm{m}^{2}$ respectively. If the direct stress due to loading is $175 \mathrm{kN} / \mathrm{m}^{2}$ (compressive), then the intensity of resultant stress at corner B will be
a. $425 \mathrm{kN} / \mathrm{m}^{2}$ compressive
b. $125 \mathrm{kN} / \mathrm{m}^{2}$ compressive
c. $75 \mathrm{kN} / \mathrm{m}^{2}$ tensile
d. $225 \mathrm{kN} / \mathrm{m}^{2}$ compressive

Q :) A rectangular block of size $200 \mathrm{~mm} \times 100 \mathrm{~mm} \times$ mm is subjected to a shear stress of $100 \mathrm{~N} / \mathrm{mm}^{2}$. If modulus of rigidity of material is $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, strain energy stored will be
a. 10 N.m
b. 25 N.m
c. 50 N.m
d. 100 N.m

TORSION

Q :) Euler's crippling load for a column of length L with one end fixed and the other hinged is

$$
\begin{aligned}
& \mathbf{A}: \frac{\pi^{2} E I}{L^{2}} \\
& \mathbf{B}: \frac{4 \pi^{2} E I}{L^{2}} \\
& \mathbf{C}: \frac{\pi^{2} E I}{4 L^{2}} \\
& \mathbf{D}: \frac{2 \pi^{2} I}{L^{2}}
\end{aligned}
$$

Q :) Euler,s formula is valid for A : Short columns only
B : Long columns only
C: Both short and long columns
D : None of the above

Q :) The maximum dimension of a core section for a rectangular cross-section under economic loading on a column (bxd)
A : b/6
B : d/6
C : d/8
$D: b / 3$ and $d / 3$

Q :) Two shaft of solid circular cross-section are identical except for their diameters ' d_{1} '. They are subjected to the same torque ' T '. The ratio of the strain energies stored $\mathrm{U}_{1} / \mathrm{U}_{2}$ will be
A. $\left(\frac{d_{1}}{d_{2}}\right)^{4}$
B. $\left(\frac{d_{1}}{d_{2}}\right)^{2}$
C. $\left(\frac{d_{2}}{d_{1}}\right)^{2}$
D. $\left(\frac{d_{2}}{d_{1}}\right)^{4}$

Q :) A shaft turns at 150 rpm under a torque of 1500 Nm. Power transmitted is
a. $15 \pi \mathrm{kw}$
b. $10 \pi \mathrm{kw}$
c. $7.5 \pi \mathrm{kw}$
d. $5 \pi \mathrm{kw}$

Q :) If the diameter of a shaft subjected to torque alone is double, then the horse power P can be increased to
a. 16 P
b. 8 P
c. 4 P
d. 2 P

Q :) A bar AB of diameter 40 mm and 4 m long is rigidly fixed at its ends. A torque of 600 Nm is applied at a section of the bar, 1 m from end A. The fixing couples T_{A} and T_{B} at the supports A and B respectively, are
a. 450 Nm and 150 Nm
b. 200 Nm and 400 Nm
c. 300 Nm and 150 Nm
d. 300 Nm and 100 Nm

Q :) The ratio of maximum shear stress developed in a solid shaft of diameter D and a hollow shaft of external diameter \mathbf{D} and internal diameter d for the same torque is given by
A. $\frac{D^{2}+d^{2}}{D^{2}}$

$$
\text { C. } \frac{D^{2}-d^{4}}{D^{4}}
$$

$$
\begin{aligned}
& \text { B. } \frac{D^{2}-d^{2}}{D^{2}} \\
& \text { D. } \frac{D^{4}-D^{4}}{d^{4}}
\end{aligned}
$$

Q :) A solid circular shaft of 6 m length is built in a its ends and subjected to an externally applied torque $60 \mathrm{kN}-\mathrm{m}$ at a distance of $\mathbf{2} \mathbf{m}$ from left end. The reactive torques at the left end and the right end are respectively
a. $20 \mathrm{kN} . \mathrm{m}$ and $40 \mathrm{kN} . \mathrm{m}$
b. 40 kN.m and $20 \mathrm{kN} . \mathrm{m}$
c. $15 \mathrm{kN} . \mathrm{m}$ and $45 \mathrm{kN} . \mathrm{m}$
d. 30 kN.m and 30 kN.m

Q :) If the internal radius of a hollow shaft is n times the external radius, then ratio of torques carried by the hollow shaft and solid shaft of same cross-section area and subjected to the same maximum shearing stress is

A: $1-\mathrm{n}^{2}$
B : $\frac{1+n^{2}}{1+n^{2}}$
C: $\frac{\sqrt{1+n^{2}}}{1-n^{2}}$

Q :) If the crushing stress in the material of a mild steel column is $3300 \mathrm{~kg} / \mathrm{cm}^{2}$, Euler's formula for crippling load is applicable for slenderness ratio equal to/greater than
a. 40
b. 50
c. 60
d. 80

Q :) Match List-I with List - and select the correct

LiSt - I	List - \\|
A. Shear centre	1. Tension
B. Principal plane	2. Slope
C. Fixed end	3. Shear stress
D. Middle third rule	4. Twisting

Codes:

a. A-4, B - 3, C - 2, D - 1
b. A - 3, B - 1, C - 4, D - 2
c. $A-4, B-1, C-2, D-3$
d. $A-4, B-2, C-3, D-1$

Q :) Which one of the following rules ascertains the maximum permissible eccentricity of loads on circular column so that stresses will always be compressive ? a. Middle fourth rule b. Middle third rule
c. Middle half rule
d. Middle tow-third rule

Q :) The slenderness Ratio of a compression member in the context of Ramkine's formula is defined as

A. $\frac{\text { length }}{\text { least lateral dim ension }}$
B. effective length
least radius of gyration
effective length
least lateral dim ension
D.

length

least radius of gyration

GIVIL ENGINIEBRING

OPTIONAL PAPER
OBJECTIVE QUESTION PRACTICE PROGRAM 1500 + QUESTIONS

COURSE DURATION

Telegram Channel
EVEREXAM TECH
Ansism

