CIVIL ENGINEERING

DPPSAAE

OBJEGTIVE QUESTION PRAGTICE PROGRAM

1500 ＋questions

COURSE DURATION：－ $100+H R S$

APPLY ONLINE
FOR ENQUIRY：－ 8595517959

Q :) A shaft turns at 150 rpm under a torque of 1500 Nm. Power transmitted is
a. $15 \pi \mathrm{kw}$
b. $10 \pi \mathrm{kw}$
c. $7.5 \pi \mathrm{kw}$
d. $5 \pi \mathrm{kw}$

Q :) If the diameter of a shaft subjected to torque alone is double, then the horse power P can be increased to
a. 16 P
b. 8 P
c. 4 P
d. 2 P

Q :) A bar AB of diameter 40 mm and 4 m long is rigidly fixed at its ends. A torque of 600 Nm is applied at a section of the bar, 1 m from end A. The fixing couples T_{A} and T_{B} at the supports A and B respectively, are
a. 450 Nm and 150 Nm
b. 200 Nm and 400 Nm
c. 300 Nm and 150 Nm
d. 300 Nm and 100 Nm

Q :) The ratio of maximum shear stress developed in a solid shaft of diameter D and a hollow shaft of external diameter \mathbf{D} and internal diameter d for the same torque is given by
A. $\frac{D^{2}+d^{2}}{D^{2}}$

$$
\text { C. } \frac{D^{2}-d^{4}}{D^{4}}
$$

$$
\begin{aligned}
& \text { B. } \frac{D^{2}-d^{2}}{D^{2}} \\
& \text { D. } \frac{D^{4}-D^{4}}{d^{4}}
\end{aligned}
$$

Q :) A solid circular shaft of 6 m length is built in a its ends and subjected to an externally applied torque $60 \mathrm{kN}-\mathrm{m}$ at a distance of $\mathbf{2} \mathbf{m}$ from left end. The reactive torques at the left end and the right end are
respectively
a. $20 \mathrm{kN} . \mathrm{m}$ and $40 \mathrm{kN} . \mathrm{m}$
b. 40 kN.m and 20 kN.m
c. $15 \mathrm{kN} . \mathrm{m}$ and $45 \mathrm{kN} . \mathrm{m}$
d. 30 kN.m and 30 kN.m

Q :) If the internal radius of a hollow shaft is \boldsymbol{n} times the external radius, then ratio of torques carried by the hollow shaft and solid shaft of same cross-section area and subjected to the same maximum shearing stress is

A: $1-n^{2}$
B : $\frac{1+n^{2}}{1+n^{2}}$
C: $\frac{\sqrt{1+n^{2}}}{1-n^{2}}$

Q :) If the crushing stress in the material of a mild steel column is $3300 \mathrm{~kg} / \mathrm{cm}^{2}$, Euler's formula for crippling load is applicable for slenderness ratio equal to/greater than
a. 40
b. 50
c. 60
d. 80

Q :) Match List-I with List - and select the correct

LiSt - I	List - \\|
A. Shear centre	1. Tension
B. Principal plane	2. Slope
C. Fixed end	3. Shear stress
D. Middle third rule	4. Twisting

Codes:

a. A-4, B - 3, C - 2, D - 1
b. A - 3, B - 1, C - 4, D - 2
c. $A-4, B-1, C-2, D-3$
d. $A-4, B-2, C-3, D-1$

Q :) Which one of the following rules ascertains the maximum permissible eccentricity of loads on circular column so that stresses will always be compressive ? a. Middle fourth rule b. Middle third rule
c. Middle half rule
d. Middle tow-third rule

Q :) The slenderness Ratio of a compression member in the context of Ramkine's formula is defined as

A. $\frac{\text { length }}{\text { least lateral dim ension }}$
B. effective length
least radius of gyration
effective length
least lateral dim ension
D.

length

least radius of gyration
$\mathrm{Q}:$) Two closed springs of stiffness ' K ' and ' $2 \mathrm{~K}^{\prime}$ are arranged in series in one case and in parallel in the other case. The ratio of stiffness of springs connected in series to parallel is
A. $1 / 3$
B. $1 / 9$
C. 2/3
D. 2/9

Q :) A close-coiled helical spring with n coils, mean radius \mathbf{R} and diameter d is subjected to an axial load \mathbf{W}. what is the compression in the spring?
A. $\frac{64 W R^{3} n}{C d^{3}}$
B. $\frac{64 W R^{3} n}{C d^{4}}$
C. $\frac{32 W R^{3} n}{C d^{3}}$

D $\frac{32 W R^{3} n}{C d^{4}}$

Q :) A close helical spring of $\mathbf{1 0 0} \mathbf{~ m m}$ mean diameter made of 10 mm diameter rod, and has 20 turns. The spring carries an axial load of 200 kN with $\mathrm{G}=8.4 \times 10^{4}$ $\mathrm{N} / \mathrm{mm} 2$. The stiffness of the spring is nearly
a. $5.25 \mathrm{~N} / \mathrm{mm}$
b. $6.50 \mathrm{~N} / \mathrm{mm}$
c. $7.25 \mathrm{~N} / \mathrm{mm}$
d. $8.50 \mathrm{~N} / \mathrm{mm}$

Q :) A closely coiled helical spring of round steel wire 5 mm in diameter having $\mathbf{1 2}$ complete coils of 50 mm mean diameter is subjected to an axial load of 100 N . modulus of rigidity of the spring is $80 \mathrm{kN} / \mathrm{mm}^{2}$. what is the deflection of the spring?
a. 12 mm
b. 24 mm
c. 36 mm
d. 48 mm

Q :) Moa thick cylindrical pressure vessel of inner diameter D_{1} and outer diameter D_{0} is subjected to an internal fluid pressure of intensity p. the variation of the circumferential tensile stress p_{y} in the thickness of the shell will be

Q :) A thin cylindrical steel pressure vessel of diameter 6 cm and wall thickness 3 mm is subjected to an internal fluid pressure of intensity p. if the ultimate strength of steel is $3600 \mathrm{~kg} / \mathrm{cm}^{2}$, the bursting pressure will be
a. $18 \mathrm{~kg} / \mathrm{cm}^{2}$
b. $36 \mathrm{~kg} / \mathrm{cm}^{2}$
c. $180 \mathrm{~kg} / \mathrm{cm}^{2}$
d. $360 \mathrm{~kg} / \mathrm{cm}^{2}$

Q :) A thin cylindrical shell of internal diameter ' D ' and thickness ' t ' is subjected to internal pressure ' p ' the change in diameter is given by
A. $\frac{p D^{2}}{4 t E}(2-\mu)$
B. $\frac{p p^{2}}{4 F E}(1-2 \mu)$
C. $\frac{p D^{2}}{2 t E}(1-2 \mu)$
D. $\frac{p D^{2}}{2 t E}(2-\mu)$

Q :) A cast iron pipe of 1 m diameter is required to withstand a $\mathbf{2 0 0} \mathbf{m}$ head of water. If the limiting tensile stress of the pipe material is $\mathbf{2 0} \mathbf{~ m p a}$, Then the thickness of the pipe will be
a. 25 mm
b. 50 mm
c. 75 mm
d. 100 mm

Q :) The ratio of tensile stress developed in the wall of a boiler in the longitudinal direction to the tensile stress in the circumferential direction due to an internal pressure is
a. 4
b. 2
c. 1 / 4
d. 1 / 2

Q :) A thin cylindrical tube with closed ends is subjected to

1. Longitudinal stress $\sigma_{1}=14 \mathrm{~N} / \mathrm{mm}$
2. Hoop stress $\sigma_{2}=2 \mathrm{~N} / \mathrm{mm}$
3. Shearing stress $\tau=8 \mathrm{~N} / \mathrm{mm}$

Then the maximum shearing stress is
a. $14 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~h}$
b. $12 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~h}$
c. $10 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~h}$
d. $8 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~h}$

Q :) A cylindrical of 100 cm diameter made of mild steel plate to be subjected to an internal pressure of 10 $\mathrm{kg} / \mathrm{cm}^{2}$. If the material yields at a stress of $200 \mathrm{~kg} / \mathrm{cm}^{2}$, assuming factor of safety as 4 and using maximum principal stress theory, the requisite thickness of the a. 8 mm
b. 10 mm
c. 12 mm
d. 15 mm

GIVIL ENGINIEBRING

OPTIONAL PAPER
OBJECTIVE QUESTION PRACTICE PROGRAM 1500 + QUESTIONS

COURSE DURATION

Telegram Channel
EVEREXAM TECH
Ansism

