## Everpon <br> CIVIL ENCINEERING

## QUESTION PRACTICE PROGRAM

SSC IE PIIE 2019 30OO+ QUESTION PRAGIIGE

$$
\begin{gathered}
\text { Fee } \\
\text { RS. } 399 /-
\end{gathered}
$$

RMISTHNTIE 2000 QUESTION PRAGTIGE

Q: ) The shear stress in a fluid may be expressed as $\tau={ }^{\mu\left(\frac{d u}{d y}\right)^{2} \text {, }}$ where $\mu$ is the viscosity, $\mathrm{du} / \mathrm{dy}$ is the velocity gradient and n is a constant. The $n$-values for Newtonian and non-Newtonian fluids will be respectively $A: n=1 \& n>1$

B: $n<1 \& n<1$
$C: n=1 \& n<1$
$D: n=1 \& n=1$

Q: ) Match List - I with List - II and select the correct answer using the codes given below the lists:

| List - I | List $-I I$ |
| :--- | :--- |
| A. Specific weight | 1. $\mathrm{L} / \mathrm{T}^{2}$ |
| B. Density | 2. $\mathrm{F} / \mathrm{L}^{3}$ |
| C. Elasticity | 3. $\mathrm{F} / \mathrm{L}^{2}$ |
| D. Viscosity | 4. $\mathrm{FT} / \mathrm{L}^{2}$ |
|  | $5 . \mathrm{FT}^{2} / \mathrm{L}^{4}$ |

Codes:
A : A-1, B-2, C-3, D-4
B : A-1, B-2, C-3, D-5
C : A-2, B-5, C-3, D-4
D : A-2, B-4, C-3, D-5

Q: ) An increase in pressure of 2 bars decrease the volume of liquid by 0.01 percent. The bulk modulus of elasticity of the liquid is
A: $2 \times n / m^{2}$
B: $2 \times \mathrm{N} / \mathrm{m}^{2}$
C : $2 \times 10^{9}$
D : $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

Q: ) An inclined plate 2 m long and 1 m wide lies with its length inclined at $45^{\circ}$ to the surface of water and the nearest edge 1 m below it. If the specific weight of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, then the total pressure on the plate (in kg ) is approximately.

A: 2000
B: 2500
C: 3000
D: 3420

Q: ) Match List - I with List - II and select the correct answer using the codes given below the lists:
List - List - II
A. Centimeter 1. Flow rate
B. Current meter 2. Flow velocity
C. Piezometer 3. Flow pressure

Codes:
A : A-1, B-2, C-3
B : A- 2, B-1, C-3
$C: A-3, B-2, C-1$
D: A-2, B-3, C-1

Q: ) Non-colloidal liquids are
A : Newtonian fluids
B : Plastic fluids
C : Ideal fluids
D : Dilatant fluids

Q: ) A 3 m wide, 2.5 deep, 10 m long tank, open at the top, has oil standing to 1 m depth. The maximum horizontal acceleration that can be given to the tank without spilling the oil will nearly be
A : 0.10 g
B: 0.20 g
C: 0.25 g
D: 0.31 g

Q: ) The velocity components representing the irritating flow is

$$
\begin{array}{ll}
\text { A: } u=x+y, & v=2 x-y \\
\text { B: } u=2 x+3 y, & v=-2 x^{2}+x \\
\text { C: } u=x^{2}, & v=-2 x y \\
\text { D: }-2 x, & v=2 y
\end{array}
$$

Q: ) Given the $x$-components of the velocity $u=6 x y-2 x^{2}$, the $y$ components of the flow $v$ is given by
A: $6 y^{2}$
B: $-6 x y+2 x^{2}$
C: $6 x^{2}-2 x y$
D: $4 x y-3 y^{2}$

Q: ) The velocity vector for a steady three - dimentional flow field is described as:
$\vec{V}=y z^{2} i+\hat{x} y^{2} \hat{j}(x y-2 x y z) \hat{k}$
At point $(1,2,3)$, what is the approximately value of the magnitude of the velocity?
A : 21
B: 18
C: 10
D: 4

Q: ) A water jet of an area of $0.03 \mathrm{~m}^{2}$ impinges normal on a fixed plate. if a force of 1 kN is produced as a result of the impact, the velocity of the jet would be
A : $15 \mathrm{~m} / \mathrm{s}$
B: $3.4 \mathrm{~m} / \mathrm{s}$
C: $5.78 \mathrm{~m} / \mathrm{s}$
D: $33.4 \mathrm{~m} / \mathrm{s}$

Q: ) In a V-notch, an error of $1 \%$ in the measurement of head would constitute in the discharge measurement, an error of

A: 0.01
B: 0.015
C: 0.02
D: 0.025

Q: ) The head over a $90^{\circ} \mathrm{V}$-notch weir increase from 0.15 m to 0.3 m . The ratio of new discharge to the discharge is, nearly equal to

A: 5.65
B: 1.42
C: 4
D: 2.62

Q: ) For laminar flow through a circular tube, the average velocity at a section is

A : The same as that at the centre of tube
B : Two-thirds the velocity at the centre of the tube
$C$ : Half the velocity at the centre of the tube
D : Dependent on the pressure at the section.

Q: ) Which one of the following correctly describes the relation between friction factor $f$ of a pipe material and Reynolds numbers $R$, For $R_{e}<100$ ?
$\mathrm{A}: f \propto \sqrt{R_{e}}$
$\mathbf{B}: f \propto \sqrt{\frac{1}{R_{e}}}$
$\mathrm{C}: f \propto \frac{1}{R_{e}}$
D: $f \propto \log R_{e}$

Q: ) Separation of flow can take place when
A : Flow takes place from zone of higher pressure to lower pressure
B : Flow takes place from zone of lower pressure to higher pressure
C : Pressure gradient has no influence on the flow
D : fluid is non-viscous incompressible and flow condition is isothermal

Q: ) The thickness of a laminar boundary layer at a distance 'x' from the leading edge over a flat plate varies are
A : $\mathrm{X}^{0.8}$
$B: X^{0.5}$
$C: X^{0.2}$
D: X

