

 $\mu\left(\frac{du}{dy}\right)^2,$ Q:) The shear stress in a fluid may be expressed as τ = where μ is the viscosity, du/dy is the velocity gradient and n is a constant. The n-values for Newtonian and non-Newtonian fluids will be respectively A: n = 1 & n > 1B:n<1&n<1 C: n = 1 & n < 1D: n = 1 & n = 1

Q:) Match List - I with List - II and select the correct answer using the codes given below the lists:

List - I	List - II
A. Specific weight	1. L / T ²
B. Density	2. F / L ³
C. Elasticity	3. F / L ²
D. Viscosity	4. FT / L ²
	5. FT^2 / L^4
Codes:	
A : A-1, B <mark>-2, C-3, D-4</mark>	
B : A-1, B-2, C-3, D-5	
C·A-2 B-5 C-3 D-4	
D : A-2, B-4, C-3, D-5	

Q:) An increase in pressure of 2 bars decrease the volume of liquid by 0.01 percent. The bulk modulus of elasticity of the liquid is

- A : $2 \times n/m^2$ B : $2 \times N/m^2$
- $C: 2 \times 10^{9}$
- $D: 2 \times 10^{11} \text{ N/m}^2$

Q:) An inclined plate 2 m long and 1 m wide lies with its length inclined at 45° to the surface of water and the nearest edge 1 m below it. If the specific weight of water is 1000 kg/m³, then the total pressure on the plate (in kg) is approximately.

- A : 2000 B : 2500
- C:3000
- D:3420

Youtube CHANNEL EVEREXAN

Q:) Match List - I with List - II and select the correct answer using the codes given below the lists:

List - I	List - II	
A. Centimeter	1. Flow rate	
B. Current meter	2. Flow velocity	
C. Piezometer	3. Flow pressure	
Codes:		
A : A- 1, <mark>B-</mark> 2, C-3		
B : A- 2, B-1, C-3		
C : A- 3, B-2, C-1		
D : A- 2, B-3, C-1		

- Q:) Non-colloidal liquids are
- A : Newtonian fluids
- B : Plastic fluids
- C : Ideal fluids
- D : Dilatant fluids

Q:) A 3 m wide, 2.5 deep, 10 m long tank, open at the top, has oil standing to 1 m depth. The maximum horizontal acceleration that can be given to the tank without spilling the oil will nearly be

- A:0.10g 0 b = 8595517959
- B:0.20 g
- C:0.25 g
- D:0.31 g

Q:) The velocity components representing the irritating flow is

Q:) Given the x-components of the velocity $u = 6xy - 2x^2$, the y - components of the flow v is given by

- A : 6y² B : -6xy + 2x²
- $C: 6x^2 2xy$
- $\mathsf{D}:\mathsf{4xy}-\mathsf{3y}^2$

Q:) The velocity vector for a steady three - dimentional flow field is described as:

 $\stackrel{
ightarrow}{V} \;=\; yz^2i+\hat{x}y^2\hat{j}(xy-2xyz)\hat{k}$

At point (1,2,3), what is the approximately value of the magnitude of the velocity?

- A:21
- B:18
- C:10
- D:4

Q:) A water jet of an area of 0.03 m^2 impinges normal on a fixed plate. if a force of 1 kN is produced as a result of the impact, the velocity of the jet would be

- A:15 m/s D_= 8-59-5-5179-5
- B: 3.4 m/s
- C: 5.78 m/s
- D: 33.4 m/s

Q:) In a V-notch, an error of 1% in the measurement of head would constitute in the discharge measurement, an error of

- A: 0.01 B: 0.015
- C:0.02
- D:0.025

Q:) The head over a 90° V-notch weir increase from 0.15 m to 0.3 m. The ratio of new discharge to the discharge is, nearly equal to

- A : 5.65 B : 1.42
- C:4
- D:2.62

Q:) For laminar flow through a circular tube, the average velocity at a section is

- A : The same as that at the centre of tube
- B : Two-thirds the velocity at the centre of the tube
- C : Half the velocity at the centre of the tube
- D : Dependent on the pressure at the section.

Q:) Which one of the following correctly describes the relation between friction factor f of a pipe material and Reynolds numbers R, For $R_e < 100$?

- A : $f \propto \sqrt{R_e}$ B : $f \propto \sqrt{rac{1}{R_e}}$
- ${f C}$: $f \propto rac{1}{R_e}$
- $\mathbf{D}:\mathsf{f} \varpropto \mathsf{log} \; \mathsf{R}_{\mathsf{e}}$

- Q:) Separation of flow can take place when
- A : Flow takes place from zone of higher pressure to lower pressure
- B : Flow takes place from zone of lower pressure to higher pressure
- C : Pressure gradient has no influence on the flow
- D : fluid is non-viscous incompressible and flow condition is isothermal

