CIVLL ENaINEERING

QUESTION PRACTICE PROGRAM

SSH IF PRIE 2019 3000+ QUESTION PRAGTIGE malsturne 2000 QUESTION PRAGTIOE
 - Live Online Course BY SOURAB SIR \& AUVISHSIR

Q:) For a sphere of radius 15 cm moving with a uniform velocity of $2 \mathrm{~m} / \mathrm{sec}$ through a liquid of specific gravity 0.9 and dynamic viscosity 0.8 poise, the Reynolds number will be

A : 300
B: 337.5
C: 600
D: 675

Q:) Stanton diagram is a
A : Log-log plot of friction factor against Reynolds number
B : Log-log plot of relative roughness against Reynolds number
C : Semi-log plot of friction factor against Reynolds number
D : Semi-log plot of friction factor against relative roughness

Q:) The distance y from pipe boundary, at which the point Velocity is equal to average velocity for turbulent flow, is where R is radius of pipe.
A : 0.223 R
B : 0.423 R
C: 0.577 R
D: 0.707R

Q:) If a sphere of diameter 1 cm falls in castor oil of kinematic Viscosity 10 stokes, with a terminal velocity of $1.5 \mathrm{~cm} / \mathrm{sec}$, The coefficient of drag on the sphere is

A : Less than 1
B : Between 1 and 100
C: 160
D: 200

Q:) When an ideal fluid flows past a sphere,
A : Highest intensity of pressure occurs around the circumference At right angles to flow

B : Lowest pressure intensity occurs at front stagnation point
C : Lowest pressure intensity occurs at rear stagnation point
D : Total drag is zero

Q:) For hydro-dynamically smooth boundary, the friction Coefficient for turbulent flow is

A : Constant
B : Dependent only on Reynolds number
C : A function of Reynolds number and relative roughness
D : Dependent on relative roughness only

Q:) For laminar flow in a pipe of circular cross- section, the Darcy`s friction factor f is

A : Directly proportional to Reynolds number and independent of Pipe wall roughness
B : Directly proportional to pipe wall roughness and independent Of Reynolds number

C : Inversely proportional to Reynolds number and independent of Pipe wall roughness
D : Inversely proportional to Reynolds number and directly proportional to pipe wall roughness.

Q:) Separation of flow occurs when

A : The pressure intensity reaches a minimum
B : The cross-section of a channel is reduced
C : The boundary layer comes to rest
D : All the above

Q:) The loss of energy due to sudden enlargement is given by
A : $\frac{V_{2}^{2}}{2 g}\left(\frac{A_{2}}{A_{1}}-1\right)^{2}$
B : $\left(\frac{V_{1}-V_{2}}{2 g}\right)^{2}$
C : $\left(\frac{V_{1}^{2}-V_{2}^{2}}{2 g}\right)^{2}$
D: $\frac{V_{1}^{2}}{2 g}\left(1-\frac{A_{2}}{A_{1}}\right)^{2}$
Where $\mathrm{A}_{1}, \mathrm{~V}_{1}$ are area of cross-section and velocity at entry and $\mathrm{A} 2, \mathrm{~V} 2$, are area of cross-section and velocity at exit

Q:) The ratio of average velocity to maximum velocity for Steady laminar flow in circular pipes is

A: 43862
B : 43892
C: 43864
D: 2

Q:) The distance from pipe boundary, at which the turbulent Shear stress in one-third the wall shear stress, is Where R is the radius of pipe

A: 1/3R
B: 1/2R
C: $2 / 3 R$
D: 3/4R

Q:) The discharge of a liquid of kinematic viscosity $4 \mathrm{~cm}^{2} / \mathrm{sec}$ through a 8 cm diameter pipe is $3200 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. the type of flow expected is

A : Laminar flow
B : Transition flow
C : Turbulent flow
D : Not predictable form the given data

Q:) The prandt I maximum length is
A : Zero at the pipe wall
B : Maximum at the pipe wall
C : Independent of shear stress
D : None of the above

Q:) The velocity distribution for laminar flow through a Circular tube
A : Is constant over the cross-section
B : Varies linearly from zero at walls to maximum at centre
C : Varies parabolic ally with maximum at the centre
D : None of the above

Q:) A fluid of kinematic viscosity $0.4 \mathrm{~cm}^{2} / \mathrm{sec}$ flows through A 8 cm diameter pipe. The maximum velocity for laminar Flow will be

A : Less than $1 \mathrm{~m} / \mathrm{sec}$
B: 1m/sec
C : $1.5 \mathrm{~m} / \mathrm{sec}$
D : $2 \mathrm{~m} / \mathrm{sec}$

Q:) The speed of a pressure wave through a pipe depends upon
A: The length of pipe
B : The viscosity of fluid
C : The bulk modulus for the fluid
D : The original head

Q:) The length of a pipe is 1 k and its diameter is 20 cm . If the diameter of an equivalent pipe is 40 cm , then its length is

A: 32 km
B : 20 km
C: 8 km
D: 4 km

Q:) A fluid of kinematic viscosity $0.4 \mathrm{~cm}^{2} / \mathrm{sec}$ flows through A 8 cm diameter pipe. The maximum velocity for laminar Flow will be

A : Less than is
B : Between d and 1.5 d
C : Between 1.5 and 2d
D : Grater than 2d

Q:) The boundary layer thickness at a distance of 1 m from The leading edge a flat plate, kept at zero angle of incidence to the flow direction, is 0.1 cm . the velocity outside the boundary layer is $25 \mathrm{~m} / \mathrm{sec}$. the boundary layer thickness at a distance of 4 m is assume that Boundary layer is entirely laminar.

A : 0.40 cm
B: 0.20 cm
C: 0.10 cm
D : 0.05 cm

Q:) Which one of the following velocity fields represents A possible fluid flow?

A: $u=x ; v=y$
$B: u=x^{2} ; v=y^{2}$
$C: u=x y ; v=x^{2} y^{2}$
$D: u=x ; v=-y$

Q:) A harbor model has a horizontal scale of $1 / 150$ and a vertical scale of 1/60.the interval between successive high tides in the model will be nearly

A : 90 min
B: 40 min
C: 15 min
D: 5 hours

Q:) A model of reservoir is emptied in 10 minutes. If the Model scale is
$1: 25$, the time taken by the prototype to empty itself, would be
A : 250 minutes
B : 50 minutes
C: 6250 minutes
D: 2 minutes

Q:) A value is suddenly closed in a water main in which the velocity is 1 $\mathrm{m} / \mathrm{sec}$ the inertia head at the value will be

A: 1 m
B: 10 m
C: 100 m
D: None of the above

