CIVIL ENGINEERING

DPPSAAE

OBJEGTIVE QUESTION PRAGTICE PROGRAM

1500 ＋questions

COURSE DURATION：－ $100+H R S$

APPLY ONLINE
FOR ENQUIRY：－ 8595517959

Q:) The effect of sinking of supports by δ is to create a bending moment equal to
A : 2EIS/I2
B : 6EIS/12
C : 3EIS/1²
D:EIS/I²

Q:) Column analogy method may be used to analyze
A : Fixed beam
B : Portal frame
C : Box frame
D : All of the above

Q:) Which of the following are indeterminate

 structure?A : 3-hinged arch
B : Continuous beam
C : Redundant frame
D : Both (b) and (c)

Q:) No. of degree of static indeterminacy for the beam shown below is

A:-1
B : 0
C: 1
D: 2

Q:) In the truss shown below which statement is correct?

A : Externally unstable
B : Internally unstable
C : Statically determinate structure
D : Statically indeterminate structure

Q:) The fixed end moment at A for the structure shown below is

A : $40 \mathrm{kN}-\mathrm{m}$
B : $80 \mathrm{kN}-\mathrm{m}$
C : $100 \mathrm{~N}-\mathrm{m}$
D : 120 N-m

Q:) For the beam shown below, correct BMD is

Q:) The line of thrust in a parabolic arch is
A : Parabolic
B : Circular
C : Triangular
D : Funicular polygon

Q:) The reaction at support A for the beam shown below is

A : 15 kN
B: 16 kN
C: 17 kN
D: 18 kN

Q:) The point of contra flexure is the point where
A : Bending moment changes sign
B : Bending moment is maximum
C : Bending moment is minimum
D : Shear force is zero

Q:) A two hinged arch is statically indeterminate by A: 0 degree
B: 1 degree
C: 2 degree
D: 3 degree

Q:) In three hinged arch, maximum hogging moment occurs when, the point load is at A: Springing
B : Crown
C : Quarter span
D : The section itself

Q:) Deflections in a truss depends upon A : Axial rigidity
B : Flexural rigidity
C : Axial and flexural rigidity
D : None of these

Q:) Influence line diagram for bending moment in a simply supported beam is a
A : Straight line
B : Parabola
C : Triangle
D : None of these

Q:) Deflections in a truss depends upon A : Axial rigidity
B : Flexural rigidity
C : Axial and flexural rigidity
D : None of these

Q:) For a fixed beam loaded as shown below, if the support, B rotates $+\theta$ B radian anticlockwise, the fixed end moment at B is

$$
\begin{aligned}
& \mathbf{A}:-\frac{W l^{2}}{12} \frac{2 E I \theta_{B}}{l} \\
& \mathbf{B}:-\frac{W l^{2}}{12} \frac{4 E I \theta_{B}}{l} \\
& \mathbf{C}:+\frac{W l^{2}}{12} \frac{2 E I \theta_{B}}{l} \\
& \mathbf{D}:+\frac{W l^{2}}{12} \frac{4 E I \theta_{B}}{l}
\end{aligned}
$$

Q:) The plastic theory is generally used for A : Column
B : Beams
C : Rigid frame structures
D : Roofs

Q:) The reversible nature of loads are
A : Earthquake loads
B : Wind loads
C : Both (a) and (b)
D : None of these

Q:) An under reinforced section means
A : Reinforcing steel reaches its yield stress first
B : Concrete reaches its maximum stress first
C : Reinforement provided is equal to maximum
D : None of the above

Q:) The live load to be considered for an inaccessible roof is
A: 0
B : $75 \mathrm{~kg} / \mathrm{m}^{2}$
C : $150 \mathrm{~kg} / \mathrm{m}^{2}$
D : $250 \mathrm{~kg} / \mathrm{m}^{2}$

Q:) Spacing of shear stirrups in a rectangular RC simply supported beam is
A : Kept constant thought the span.
B : Decreased towards the centre of beam.
C : Increased towards the ends of beam.
D : Increased towards the ends of beam.

Q:) The minimum grade of concrete that can be used for pre-tensioned beam system is
A : M20
B : M25
C : M30
D : M40

Q:) The strength of compression member with helical reinforcement shall be taken as the number of times the strength of similar member with lateral ties
A : 1.03
B : 1.05
C: 1.1
D : 1.15

Q:) In case of cantilever beam, the vertical deflection limits may generally be assumed to be satisfied provided that the span to depth ratio are not greater than
A: 7
B: 20
C: 26
D: 30

Q:) The diameter of longitudinal bears of an RC column should not be less than
A : 6 mm
B : 8 mm
C : 10 mm
D : 12 mm

Q:) Enlarged head of a supporting column of an RC flat slab is called
A : Capital
B : Drop panel
C : Column head
D : None of these

Q:) An RC column is reported as long column if the ratio of its effective length and least lateral dimension exceeds
A : 10
B : 12
C: 15
D: 20

Q:) Distribution reinforcement in a simply supported RC slab provided to distribute A : Load
B : Temperature stresses
C : Shrinkage stresses
D : All of these

Q:) As per IS 456:2000, the tensile of concrete can be obtained from
A: 0.67 Vf ck
B : 0.7Vf f_{ck}
$\mathrm{C}: 0.75 \mathrm{Vf} \mathrm{ck}$
D : 0.87 Vf ck

Q:) Four vertical columns of the same material, height and weight have the same end conditions. The buckling load will be the largest for column having the crosssection of
A : Solid square
B : Thin hollow circle
C : Solid circle
D : H-Section

Q:) Effective length of steel column effectively held at both ends in position but not restrained in direction is ' x ' times its length between two ends, where ' x ' is equal to
A : 0.65
B : 0.85
C: 1
D: 2

Q:) Effective length of a column is the length between the points of
A : Support
B : Maximum moment
C: Zero moment
D: Zero shear

Q:) A steel plate is 300 mm wide and 10 mm thick. It has one rivet of nominal diameter $\mathbf{1 8} \mathbf{~ m m}$. The net sectional area of plate is
A : $1800 \mathrm{~mm}^{2}$
B : $2805 \mathrm{~mm}^{2}$
C : $2820 \mathrm{~mm}^{2}$
D : $3242 \mathrm{~mm}^{2}$

Q:) Vertical web stiffness are used in plate girder to A : Avoid buckling of web plate.
B : Improve the aesthetic of girder.
C : Increase the moment capacity of girder.
D : None of the above

Q:) In case of l-section steel beam
A : Shear capacity of flanges in neglected.
B : Shear capacity of web is neglected.
C : Shear capacity of both flange and web is neglected
D : None of the above

Q:) The weakest plane is a filled web is
A : A side parallel to the force
B : A side normal to the force
C : Along the throat
D : Normal to the throat

Q:) The strength at which steel fails under repeated load applications is known as
A : Impact strength
B : Tensile strength
C : Yield strength
D : Fatigue strength

Q:) If the angle between fusion faces of a fillet weld is $60^{\circ}-90^{\circ}$, the effective throat thickness as per indian standard is equal to
A : 1 $\sqrt{2}$ size of weld
B : 1 v 3 size of weld
C : V2 size of weld
D : V3 size of weld

Q:) The junction between flange and web of an Isection is called
A : Lap joint
B : Butt joint
C : Fillet joint
D : Shear joint

Q:) Which one of the following method does not fall under the category of force method?
A : Method of consistent deformation
B : Column analogy method
C : Equilibrium method
D : Three moment equation

Q:) In a triangular section placed with its base horizontal, ratio of maximum shear stress to average shear stress is
A: 1.25
B : 1.33
C: 1.43
D : 1.53

Q:) The effective slenderness ratio of a cantilever

 column isA: 0.5L/R
B: LRL/R
C : v2L/r
D : 2L/r

Q:) A horizontal semi-circular beam of radius ' R ' is fixed at the ends and carries a uniformly distributed load 'W' over the entire length. The bending moment at the foxed supports is
A: WR²/4
B : WR²/3
C: WR ${ }^{2} / 2$
D: WR ${ }^{2}$

Q:) The deflection is ' $\delta^{\prime \prime} \delta^{\prime}$, strain energy ' U ' and load 'W' on a truss. These are related by

$$
\begin{aligned}
& \mathrm{A}: \delta=\frac{\partial U}{\partial W} \\
& \mathrm{~B}: \delta=\frac{\partial^{2} U}{\partial W^{2}} \\
& \mathrm{C}: \delta=\frac{\partial^{3} U}{\partial W^{3}} \\
& \mathrm{D}: \delta=\left(\frac{\partial U}{\partial W}\right)^{2}
\end{aligned}
$$

Q:) Eccentricity of connections introduces

A : Primary stresses
B : Vibrating stresses
C : Secondary stresses
D : None of the above

Q:) A point load ' W ' is acting at a distance ' a ' from the left support of a three hinged arch of span 21 and rise ' h ' hinged at the crown. The horizontal reaction at the support is
A: Wa/h
B : Wa/2h
C: 2W/ha
D: 2h/Wa

Q:) As per IS Code, the reinforcement in a column should not be less than
A : 0.5\% and not more than 5% of gross section area. B : 0.6\% and not more than 7% of gross sectional area. C : 0.8% and not more than 8% of gross sectional area.
D : None of these

Q:) As per IS 456: 2000, the development length is given by
$\mathbf{A}: \frac{\phi \sigma_{s}}{8 \tau b d}$
$\mathbf{B}: \frac{\phi \sigma_{s}}{4 \tau b d}$
$\mathrm{C}: \frac{8 \pi b d}{\phi \sigma_{s}}$
$\mathrm{D}: \frac{4 \tau b d}{\phi \sigma_{s}}$

Q:) The target mean strength of concrete mix should be A : The characteristic strength +1.65 times standard deviation.
B : The characteristic length +1.45 times standard deviation.
C : The ultimate strength +1.65 times standard deviation
D : The ultimate strength +1.45 times standard deviation.

Q:) A stationary hydraulic jump occurs in a rectangular channel with the initial and sequent depths being to 0.20 m and 1.20 m respectively. The energy loss will be equal to
A : 1.042 m
B : 0.521 m
C : 1.563 m
D : 0.265 m

Q:) In a rectangular channel, the depth of flow is 1.6 m and the specific energy at that section is 2.7 m , the flow is
A : Sub critical
B : Super critical
C : Critical
D : Not possible

Q:) For a triangular channel having side slope of a 2

 horizontal to 1 vertical, the froude number, F is given by A : V/VgyB: 2V/Vgy
C: V/v2gy
D : V/vg(y/s)

Q:) If $\Psi=2 x y$, the magnitude of velocity vector at $(2,-1)$ is
A: 4V 2
B: 4
C: -8
D : , 2

Q:) The velocity potential function for a line source varies with radial distance, r as
A : $1 / r$
B $: 1 / r^{2}$
C:
D: $\ln r$

GIVIL ENGINIEBRING

OPTIONAL PAPER
OBJECTIVE QUESTION PRACTICE PROGRAM 1500 + QUESTIONS

COURSE DURATION

Telegram Channel
EVEREXAM TECH
Ansism

