QUESTION PRACTICE PROGRAM

SSC IE PRIE2019

3000 + QUBSTIONS PRACTICE
Validity: 4 Months

TELEGRAM CHANNEL EVEREXAM TECH

$2000+$ QUESTIONS

www.everexam.org | For Enquiry: 8595517959

Q:) Which one of the following statements correct?

A : Maximum longitudinal in an axially loaded short column is 6% of gross sectional area
B : Columns with circular section are provided traverse reinforcement of helical type only
C : Spacing of lateral ties cannot be more than 16 times the diameter of tie bar
D : Longitudinal reinforcement bar need not be in contact with lateral ties.

$\mathrm{Q}:$) The limits of percentage p of the longitudinal reinforcement in a column is

A: 0.15\% to 2\%
B : 0.8\% to 4\%
C: 0.8\% to 6\%
D: 0.8\% to 8\%

Q:) The load carrying capacity of column designed by working stress method is 500 kN . The collapse load of the column is A : 500.0 kN

B : 662.5 kN
C: 750.0 kN
D : 1100.0 kN

Q:) The reduction coefficient or a reinforced concrete column with an effective length of 4.8 m and size $250 \times 300 \mathrm{~mm}$ is

A: 0.8
B:0.85
C: 0.9
D: 0.95

Q:) The maximum spacing of vertical reinforcement in RCC wall should NOT exceed.

A : The thickness of wall
B : 1.5 times the thickness of wall
C : 2 times the thickness of wall
D : 3 times the thickness of wall

Q:) Lateral ties in RC columns are provides to resist
A : Bending moment
B : Shear
C : Buckling of longitudinal steel bars
D : Both bending moment and shear

Q:) In an axially loaded spirally reinforced short column, the concrete inside the core is subjected to

A : Bending and compression
B : Biaxial compression
C: Triaxial compression
D : Uniaxial compression

Q：）In a pedestrian，the factor by which the effective length should not exceed the least lateral dimensions is

A： 2
B： 3
C：4
D： 5

Q:) Which of the following are the additional moments considered for design of slender compression member in lieu of deflection in x and y directions?
A : $\frac{P_{u} l_{e x}^{2}}{2000 D}$ and $\frac{P_{u} l_{e y}^{2}}{2000 D}$
B: $\frac{P_{u} l_{e x}}{2000} \operatorname{and} \frac{P_{u} l_{e y}}{2000}$
C: $\frac{P_{u} l_{e x}^{2}}{2000 D}$ and $\frac{P_{u} l_{e y}^{2}}{2000 b}$
D : $\frac{P_{u} l_{e x}^{2}}{200 D}$ and $\frac{P_{u} l_{e y}^{2}}{200 b}$

Q:) A square column section of size $350 \mathrm{~mm} \times 350 \mathrm{~mm}$ is reinforced with four bars of 25 mm diameter and four bars of 16 mm diameter. Then the transverse steel should be

A : 5 mm dia @ $240 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
B: 6 mm dia @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
C: 8 mm dia @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
D : 8 mm dia @ $350 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Q:) An axially loaded column is of $300 \times 300 \mathrm{~mm}$ size. Effective length of column is 3 m . What is the minimum eccentricity of the axial load for the column?

A: 0
B : 10 mm
C: 16 mm
D : 20 mm

Q:) A rectangular reinforced column $(8 \times D)$ has been subjected to uniaxial bending moment M and axial load P . Characteristic strength of concrete $=$ f_{ck} ' Which one among the following column design curves shows the relation between M and P qualitatively?

(c) $\frac{P}{B D f_{c k}} \frac{\frac{M}{B D^{2} f_{c k}}}{\frac{P}{B+}}$

(d) $\frac{P}{B D f_{c k}}$

Q:) A RC column of square cross - section $\left(400 \times 400 \mathrm{~mm}^{2}\right)$ has its column load - moment interaction diagram as shown in figure below. What is the maximum uniaxial eccentricity at which a factored load $\mathrm{Pu}=640 \mathrm{kN}$ can be applied safety? (Take $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{MPa}$)

A : 300 mm
B : 400 mm
C: 600 mm
D : 800 mm

Q:) Which one of the following represents the ratio of volume of helical reinforced to volume of core?
$\mathrm{A}: 0.36\left(\frac{A_{g}}{A_{c}}-1\right) \frac{\overline{f_{c k}}}{f_{y}}$
B $: 0.36\left(\frac{A_{g}}{A_{s}}-1\right) \frac{f_{c k}}{f_{y}}$
$\mathrm{C}: 0.36\left(\frac{A_{s}}{A_{c}}-1\right) \frac{f_{c k}}{f_{y}}$
$\mathrm{D}: 0.36\left(\frac{A_{c}}{A_{s}}-1\right) \frac{f_{c k}}{f_{y}}$
where Ag, As and Ac are gross cross sectional area of the membrane area of steel and core area; and $F_{c k}$ and f_{y} are characteristic strength of concrete and steel respectively

Q:) A wall carries an axial load, $12 \mathrm{kN} / \mathrm{m}$ and also an eccentric load of 27 kN / m at 72 mm from the central axis of the wall. The equivalent eccentricity is nearly

A : 65 mm
B : 60 mm
C: 55 mm
D : 50 mm
$Q:$) Given that Φ is angle of internal friction ' p ' is the safe bearing capacity and ' y ' is the unit weight of soil, the maximum depth of foundation of masonry footings is given by
A: $\frac{p}{y}\left(\frac{1+\sin \Phi}{1-\sin \Phi}\right)$
B: $\frac{p}{y}\left(\frac{1-\sin \Phi}{1+\sin \Phi}\right)$
C: $\frac{p}{y}\left(\frac{1+\sin \Phi}{1-\sin \Phi}\right)^{2}$
D : $\frac{p}{y}\left(\frac{1-\sin \Phi}{1+\sin \Phi}\right)^{2}$

Q:) The critical section for two-away shear of footing is at the
A: Face of the column
B : Distance d from the column face
C : Distance $\mathrm{d} / 2$ from the column face
D : Distance 2d from the column face
Where d is effective depth of the footing

Q:) In the case of isolated square concrete footing, match the locations at which the stress resultants are to be checked, where d is effective depth of footing and select correct answer using the code given below the lists:

Stress Resultant	Location
A. Bending Moment	1. At face of column
B. One Way shear	2. At $\mathrm{d} / 2$ from face of column
C. Punching Shear	3. At d face of column

Codes:
A : A-1, B-2, C-3
B : A-3, B-1, C-2
C: A-2, B-1, C-3
D : A-1, B-3, C-2

