

Q:) For the plane frame as shown in the figure, the degree of kinematic indeterminacy neglecting axial deformation, is [Rajasthan PSC 2018]

Q:) Which method not fall under the category of displacement methods? [M.P. Sub Eng. 2 Sep 2018 2.00 pm]

- A : Moment distribution method
- B : Slope deflection method
- C : Method of consistent deformation
- D : Kani's method

Q:) The magnitude of fixed end moment in a fixed beam of span 'I' subjected to a uniformly distributed load 'W' per unit length is [UK combined AE paper-I, 2012/

UTTRAKHAND AE 2013/UKPSC AE (paper-I) 2007]

- A : WI/96
- $B: Wl^{2}/24$
- $C: Wl^2/20$
- $D: Wl^2/12$

Q:) Find the horizontal thrust in tonnes when a symmetrical parabolic arch of span 25 meters rise to 3 meters hinged at the springing.

Given uniformly distributed load = 5 tonnes per meter run of the span [M.P. vyapam draftman 2016]

- A : 129 t./129 tan
- B: 130 t./130 tan
- C: 131 t./131 tan
- D: 132 t./132 tan

Q:) The propped cantilever beam shown in the figure is provided with a hinge at C. A and B are at the same level. The reaction at fixed end A will be: [UKPSC AE (Paper-I) 2007]

Q:) A three-hinged symmetrical arch is loaded as shown in the figure below. Which one of the following is the magnitude of the correct horizontal thrust? [UTTRAKHAND AE 2013]

A : 2.66 P B : 2 P C : 1.5 P D : 0.75 P Q:) What are the bending moments at ends A and B of uniform foxed beam AB as shown in figure when two concentrated loads acts at 1/3 spans? [UTTRAKHAND AE 2013]

- $A: \frac{2}{9}WL$
- $B: \frac{4}{9}WL$
- $C: \frac{6}{9}WL$ $D: \frac{8}{9}WL$

Q:) Foa a 6 m long fixed beam caring two loads of 300 kN, each support, the point of contra flexure will be situated from distance 'a' from left support, where 'a' is

- [LMRC AE 2017 I-shift]
- A : 1.33 m
- B:3 m
- C:2 m
- D : 1.5 m

Youtube CHANNEL EXTERNED AND

Q:) A uniform beam of span 2L carrying uniformly distributed load of 3 W per unit length, is rigidly fixed at both supports, Calculate it's bending moment at mid span.[UPRVUNL JE 2014]

- $A: WL^{2}/24$
- B : WL²/2
- $C : WL^{2}/12$
- $D: WL^2/18$

Q:) If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists [NBCC JE 2018 (Morning shift)]

- A : Tensile force
- B : Shear force
- C : Compressive force
- D : Bending moment

Q:) A two hinged parabolic arch of span I and rise h carries a load varying from zero at the left end to w per unit run at the right end. The horizontal thrust is: [SSC JE 29-01-2018 (Evening shift)]

Q:) There are two hinged semicircular arches. A, B and C of radi 5 m, 7.5 m, and 10 m respectively and each carries a concentrated load W at their crowns. The horizontal thrust at their support will be in the ratio of: [SSC JE 24-01-2018 (Evening Shift)]

- $A: 1: 1\frac{1}{2}: 2$
- **B**: $2:1\frac{1}{2}:1$
- **C**:1:1:2
- **D** : None of these

Q:) An isolated load W is acting at a distance 'a' from the lefthand support of a three-hinged arch of span '2l' and rise 'h' hinged at the crown. The vertical reaction of the arch is: [SSC JE 22.1.2018 (Evening Shift)]

Q:) What does the influence line for Bending moment indicate? Benning moment at any section on the structure for a given positions of load.

Bending moment at a given section for any position of a point load. [SSC JE 2 MARCH 2017 Morning Shift]

A : Only A

- B: Only B
- C : Both A and B

D : Neither A nor B

Q:) The maximum bending moment in a beam under a wheel load caused by a train of moving load, is [UTTRAKHAND AE 2013]

A : When this wheel and the C.G. of the total system are equidistant from the supports of the beam

- B : Always at the centre
- C : Closest to CG of loads
- D : None of above

Youtube CHANNEL EXTERNED TO A INT

Q:) A single load of 100 kN rolls along a girder of 20m simply supported span, the maximum bending moment is-[AIRPORT AUTHORITY OF INDIA JE 2015]

- A : 100 kNm
- B : 500 kNm
- C : 150 kNm
- D : 600 kNm

Q:) The maximum bending moment due to moving load on a simply supported beam, occurs [Rajasthan JE 2015]

- A : At the mid span
- B : AT the supports
- C : Under the load
- D : Everywhere along the beam

Q:) A single rolling load of 8t rolls along a girder of 15 m span. The absolute maximum bending moment will be [HPSSSB JE 03-07-2016]

- A : 8t-m
- B:15t-m
- C : 30t-m
- D : 60t-m

Q:) Influence lines usually represent the effect of which load among the following only at a specified point on structural member ? [BSPHCL JE Civil 29-01-2019 (Batch-2)]

- A : Concentrated load
- B : Uniformly distributed load
- C : Uniformly varying load
- D : Moving load

Q:) If $\theta_h = \frac{wL^3}{6EI}$ and $y_h = \frac{wL^4}{8EI}$ are slope and deflection at B, the values for θ_c and y_c will be: Civil ESIC JE, 2019

- $\mathbf{A} : \frac{wL^3}{48EI}, \frac{wL^4}{8EI}$ $\mathbf{B} : \frac{wL^3}{6EI}, \frac{7wL^4}{24EI}$ $\mathbf{C} : \frac{wL^3}{8EI}, \frac{wL^4}{24EI}$
- $\mathsf{D}: rac{WL^2}{6EI}, rac{wL^4}{8EI}$

EVEREXAN

Q:) When one end of a fixed beam deflects by δ then the bending moment at deflected end is [NBCC JE 2018 (Morning Shift)]

Q:) Two fixed beams A and B are having same span 'L' beam 'B' carries a central point load 'W' and beam A carries an uniformly distributed load such that ratio of maximum deflections between beams B and A is [D.S.S.S.B. JE 2015]

