Q :) A pipe contains an oil of specific gravity 0.9. A differential manometer connected at the two points A and B shows a difference in mercury levels as 15 cm . The difference of pressure at the two points A and B will be (Note : consider the density of mercury as $13600 \mathrm{~kg} / \mathrm{m}^{3}$) [ISRO 2020] A : $18688 \mathrm{~N} / \mathrm{m}^{2}$
B : $15981 \mathrm{~N} / \mathrm{m}^{2}$
C : $288 \mathrm{~N} / \mathrm{m}^{2}$
D: $6528 \mathrm{~N} / \mathrm{m}^{2}$

Q :) Shear reinforcement is required to prevent propagation of \qquad . [UPPCL JE 2020]
A : Flexural cracks
B : Dowel crack
C : Splitting crack
D : Diagonal cracks

Q :) Rankine's Theory is also known as: [UPPCL JE 2020]
A : Maximum distortions energy theory
B : Maximum shear stress theory
C : Maximum Principal stress theory
D : Maximum strain energy theory

Q :) A point in a strained material is subjected to two mutually perpendicular stresses of 150 MPa (tensile) and 50 MPa (compressive), then what will be the magnitude of maximum shear stress in the component? [MPSC AE 2019]
A: 50 MPa
B : 100 MPa
C : 150 MPa
D : 200 MPa

Q :) Euler's formula for buckling of column does not hold good if slenderness ratio $\left(\frac{l e}{K}\right)$ is \qquad for mild steel column. [MPSC AE 2019]
A : Less than 80
B : Greater than 90
C : 120-160
D : 90-120
Q :) Maximum deflection of a simply supported beam with the total uniformly distributed load 'W' is: [MPSC AE 2019]
A: $\frac{W l^{3}}{384 E I}$
B: $\frac{5}{384} \frac{W l^{3}}{E I}$
C: $\frac{W l^{3}}{48 E I}$
D: $\frac{5}{48 E I} \frac{W l^{3}}{E I}$
Q :) If $S_{y}=$ Specific yield and $S_{r}=$ Specific retention, then [MPSC JE 2019]
$A: S_{y}+S_{r}=0.50$
B : $\mathrm{S}_{\mathrm{y}}+\mathrm{S}_{\mathrm{r}}=$ Porosity
C : $\mathrm{S}_{\mathrm{y}}+\mathrm{S}_{\mathrm{r}}=1.0$
D : $\mathrm{S}_{\mathrm{y}}+\mathrm{S}_{\mathrm{r}}=$ Permeability

Q :) In case of gravity dams, the factor of safety against over turning should not less than [MPSC JE 2019]
A : 1.00
B: 1.10
C: 1.25
D: 1.50

Q:) In reinforced cement concrete construction, lap splices are not recommended to be used for rebars when the bar diameter is more than: [CIL 2016-17]
(a): 36 mm
(b): 25 mm
(c): 32 mm
(d): 30 mm

Q :) What shall be the minimum effective throat thickness of a fillet weld in case of structural steel design? [CIL 2016-17]
(a): 4 mm
(b): 3 mm
(c): 5 mm
(d): 2 mm

Q :) In a detailed estimation, what is the percentage of contingency to be considered to the total item works cost as per public works department? [DMRC JE 2020]
A: 10\%
B: 15\%
C:5\%
D: 2.5\%
Q :) The moment of inertia of a rectangle (shown in the below figure) about the lower edge $A B$ is: [DMRC JE 2020]

A: $6.0 \mathrm{~m}^{4}$
B : $18.0 \mathrm{~m}^{4}$
C: $1.5 \mathrm{~m}^{4}$
D: $4.5 \mathrm{~m}^{4}$

Q :) Bearings are provided in bridges to [GPSC AE 2020]
A : allow translation and rotation in bridges
B : resist translation and rotation in bridges
C : transfer forces from sub-structure to super-structures
D : allow displacement in vertical and horizontal directions

Q :) Which of following code is useful for bridge designing? [GPSC AE 2020]
A: IRC-6
B : IS: 875, Part-I
C: IS: 3370
D : IRC-38
Q :) If the surface tension at air-water interface is $0.07 \mathrm{~N} / \mathrm{m}$, then the pressure difference between the inside and outside of an air bubble of diameter 0.02 mm will be: [LMRC JE 2020]
A : 28 kPa
B : 0.09 kPa
C : 14 kPa
D : 35 kPa

Q :) The flow in a pipe is laminar if [LMRC JE 2020]
A : Reynolds number is more than 6000
B : Reynolds number is more between 2000 and 4000
C : Reynolds number is more than 4000
D : Reynolds number is less than 2000

Q :) Three pipes with diameter, length and friction factor values of (D_{1}, L_{1},
$\left.f_{1}\right),\left(D_{2}, L_{2}, f_{2}\right)$ and ($\left.D_{3}, L_{3}, f_{3}\right)$ are connected in parallel between two reservoirs A and B. If an equivalent pipe (D_{e}, L_{e}, f_{e}), is to replace all the pipes connected in parallel, the equation to get an equivalent pipe is: [LMRC AE 2020]
$A:\left(D_{e}{ }^{5} / L_{e} f_{e}\right)^{0.5}=\left(D_{1}{ }^{5} / L_{1} f_{1}\right)^{0.5}+\left(D_{2}{ }^{5} / L_{2} f_{2}\right)^{0.5}+\left(D_{3}{ }^{5} / L_{3} f_{3}\right)^{0.5}$
$B:\left(L_{e} f_{e} / D_{e}^{5}\right)=\left(L_{1} f_{1} / D_{1}{ }^{5}\right)+\left(L_{2} f_{2} / D_{2}{ }^{5}\right)+\left(L_{3} f_{3} / D_{3}{ }^{5}\right)$
$\left.C:\left(L_{e} f_{e} / D_{e}\right)^{5}\right)^{0.5}=\left(L_{1} f_{1} / D_{1}{ }^{5}\right)^{0.5}+\left(L_{2} f_{2} / D_{2}{ }^{5}\right)^{0.5}+\left(L_{3} f_{3} / D_{3}{ }^{5}\right)^{0.5}$
$D:\left(D_{e}^{5} / L_{e} f_{e}\right)^{2}=\left(D_{1}{ }^{5} / L_{1} f_{1}\right)^{2}+\left(D_{2}{ }^{5} / L_{2} f_{2}\right)^{2}+\left(D_{3}{ }^{5} / L_{3} f_{3}\right)^{2}$

Q :) If a structure is subjected to moving loads, the variation in bending moment and shear is best described using \qquad . [LMRC AE 2020]
A : Shear force diagram
B : Influence load diagram
C : Influence line diagram
D : Bending moment diagram

Q :) The function of an air vessel in a reciprocating pump is to obtain [JPSE AE 2020]
A : reduction of suction head
B : rise in delivery head
C : continuous supply of water at uniform rate
D : increase in supply of water

Q :) The performance of a well is measured by its [JPSE AE 2020]
A : specific capacity
B : specific yield
C : storage co-efficient
D : permeability co-efficient

