DOWNLOAD Gertron TELECRAM CHANNEL EVEREXAM APP Mesing Google Play \rightarrow EVEREXAM TECH

10 Menti Quiz SUBJECT WISE

Detailed Solutions

FEE RS. 99/-

START DATE 21- June- 2020

www.everexam.org | FOR ENQUIRY : 8595517959

Q:) In a 2 m wide rectangular channel uniform flow occurs at a depth of 2 m, the velocity of flow being $\sqrt{ } 2$

A: 0
B: 1m
C: 2m
D:3m

Q:) The critical velocity for a flow of $q \mathrm{~m} / \mathrm{sec} /$ metre width of a wide rectangular channel is given by

A : $\left(\frac{q^{2}}{g}\right)^{1 / 3}$
B : $(q q)^{1 / 3}$
C: $\sqrt{q} g$
D: None of the above

Q:) Which of the following Froude number range indicates A weak jump?

$$
\begin{aligned}
& \text { A : } 1.0 \text { to } 1.7 \\
& \text { B : } 1.7 \text { to } 2.5 \\
& \text { C }: 2.5 \text { to } 4.5 \\
& \text { D }: 4.5 \text { to } 9.0
\end{aligned}
$$

Q:) If the conjugate depth before and after the jump are 0.5 m and 2.5 respectively, then the loss of energy in The hydraulic jump will be

A: 0.8 m
B: 1.6 m
C: 3.2 m
D: 6.4 m

Q:) The specific energy in $\mathrm{kg} / \mathrm{kg}$ for the flow expressed $\mathrm{BY} \mathrm{V}=2.22 \mathrm{~m} / \mathrm{sec}$ and $Y=1 \mathrm{~m}$ is

A: 1.25
B: 2.22
C: 3.22
D: 4.22

Q:) Which of the following quantities is dimensionless?

$$
\begin{aligned}
& A: p F / \mu \\
& B: \mu^{2} p / F \\
& C: p F / \mu^{2} \\
& D: \mu / P^{2} F
\end{aligned}
$$

Q:) At a rated capacity of 44 comics, a centrifugal pump develops 36 m of head when operating at 1450 rpm . Its specific speed is

A : 654
B: 509
C: 700
D: 90

Q:) A Francis turbine under a head of 25 m produces 2000 KW at a speed of 250 rpm . Its specific speed is

A: 50
B : 100
C: 150
D: 200

Q:) A reaction type turbine discharge 10 comics under a head of 8 m and with an overall efficiency of 85 percent. The power developed is

A: 667 kW
B : 680 kW
C: 800 kW
D: 867 kW

Q:) A hydraulic turbine has a discharge of $5 \mathrm{~m} / \mathrm{sec}$, when operating under a head of 20 m with a speed of 500 rpm . If it is to same discharge, the rotational speed in rpm will approximately be

A: 433
B:403
C: 627
D:388

Q:) A dimensionless combination of surface tension σ, density, p, diameter D and velocity V is

A: $\sigma \mathrm{D} / \mathrm{pV}$
$B: \sigma D^{2} / p V$
C: $\sigma / \mathrm{pV}^{2} \mathrm{D}$
$\mathrm{D}: \sigma \mathrm{D} / \mathrm{pV}^{2}$

Q:) The mean velocities at two ends of a stream tube 10 cm apart area $2.5 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ the convectional tangential acceleration mid-way is A: Zero

B : $0.5 \mathrm{~m} / \mathrm{s}^{2}$
C: $13.75 \mathrm{~m} / \mathrm{s}^{2}$
D : Not determinable

Q:) Which one of the following is the correct representation of the sequence of surface profiles if the channel slope change from mild to steep?

A: M_{1}, S_{1}
B: M_{3}, S_{2}
$C: M_{2}, S_{3}$
D: M_{2}, S_{2}

Q:) A turbine works at 20 m head and 500 rpm speed. Its 1.2 scale model to be tested at a head of 20 m should have a rotational speed of nearly

A: 1000rpm
B : 700rpm
C: 500rpm
D : 250rpm

Q:) The loss of head at various pipe fittings is given by the expression $\mathrm{Kv}^{2} / 2 \mathrm{~g}$ IF value of k were $0.40,0.90,1.5$ and 2.2 , then these would correspond respectively to

A : Foot valve of pump, 45° elbow, 90° elbow, and close return bend
B : 45° Foot value of pump, close return bend
C : 90° elbow, foot value of pump, close return bend and 45° elbow
D : Foot value of pump, close return bend 45° elbow and 90° elbow

Q:) To generate $10,000 \mathrm{hp}$ under a head of 81 m while working at a speed of 500 rpm , the turbine of choice would be

A: Pelton
B : Kaplan
C : bulb
D : Francis

Q:) The sequent depth ratio in a hydraulic jump formed in a horizontal rectangular channel is 16.48 the Froude number of the super-critical stream is

A: 4
B: 8
C: 12
D: 120

Q:) A jet water issue from a 5 cm diameter nozzle, held vertically upwards, at a velocity of $20 \mathrm{~m} / \mathrm{sec}$. If air resistance consumes 10% of the initial energy of the jet, then it would reach a height, above the nozzle, of

A: 18.35m
B : 19.14m
C: 19.92m
D : 20.00m

Q:) The head loss in a pipe of diameter d, carrying oil at a flow rate Q over a distance 1 is h . the pipe is replaced by another with half the diameter, all other things remaining the same the head loss in this case will be

A: 0.5 h
B: 2.0 h
C: 8.0 h
D:32.0h

Q:) The discharge per metre width at the foot of a spillway is $10 \mathrm{~m}^{3} / \mathrm{s}$ at a velocity of $20 \mathrm{~m} / \mathrm{s}$. a perfect free hydraulic jump will occur at the foot the spillway when the tail water depth is approximately equal to

A: 4.50 m
B : 5.00 m
C: 5.50 m
D: 6.50 m

