# Gunaman: migavionile QUESTION PRACTICE PROGRAM 

SSC IE PRIE 2019 3000 + QUESTIONS PRACTICE

Validity: 4 Months


TELEGRAM CHANNEL EVEREXAM TECH

## 2000 + QUESTIONS PRACTICE <br> DOWNIOAD EVEREXAM APP Bigh Google Play

 www.everexam.org | For Enquiry: 8595517959
## Q: ) Practical fluids possess

A : Viscosity
B : Surface tension
C : Compressibility
D : All the above.

Q: ) If the volume of a liquid weighing 3000 kg is 4 cubic metres, 0.75 is its
A : Specific weight
B : Specific mass
C : Specific gravity
D : None of these.

## Q: ) In C.G.S. system the unit of viscosity is

A: Dyne
B : Joule
C: Poise
D : None of these.

Q: ) Kinematic viscosity of liquids by equation $V=0.0022 t-1.8 t V=0.0022 t-1.8 t$ is determined by:
A : Redwood viscometer
B : Engler viscometer
C : Saybolt universal viscometer
D : None of these.

Q: ) Fluids change the volume under external pressure due to
A : Plasticity
B : Viscosity
C : Compressibility
D : None of these.

## Q: ) Molecules of fluids get attracted due to

A: Capillarity action
B : Surface tension
C: Adhesion
D : None of these.

Q: ) If cohesion between the molecules of a fluid is more than adhesion between the fluid and glass, the free level of fluid in a dipped glass tube will be

A : Higher than the surface of liquid
B : Same as the surface of liquid
C : Lower than the surface of liquid
D : None of these.

Q: ) A rise or fall of liquid in a glass tube of a very small diameter when dipped is

A : Directly proportional to the force per unit length of periphery
B : Directly proportional to the sine of the angle of contact
C : Directly proportional to the specific weight of liquid
D : Inversely proportinal to the diameter of the glass tube.

Q: ) Unit of kinematic viscosity is
A: $\mathrm{M}^{2} / \mathrm{sec}$
B: Newton sec/m²
C: Newton $\mathrm{sec} / \mathrm{m}^{3}$
D : Kg sec/m².

Q : ) Gauge pressure is
A : Absolute pressure - atmospheric pressure
B : Absolute pressure + atmospheric pressure
C : Atmospheric pressure - absolute pressure
D : None of these.

Q: ) To avoid the force of surface tension in an inclined manometer, the minimum angle of inclination is

A: $2^{\circ}$
B : $3^{\circ}$
C: $4^{\circ}$
D: $5^{\circ}$.

Q: ) The depth of the centre of pressure on a vertical rectangular gate ( 4 m wide, 3 m high) with water upto top surface, is

A: 1.0 m
B: 1.5 m
C: 2.0 m
D: 2.5 m .

Q: ) If the atmospheric pressure on the surface of an oil tank (sp. gr. 0.8) is $0.1 \mathrm{~kg} / \mathrm{cm}^{2}$, th pressure at a depth of 2.5 m , is

A : 1 metre of water
B : 2 metres of water
C : 3 metres of water
D : 4.0 metres of water.

Q: ) On an inclined plane, centre of pressure is located
A : At the centroid
B : Above the centroid
C : Below the centroid
D: Anywhere.

Q: ) A floating body attains stable equilibrium if its metacentre is
A : At the centroid
B : Above the centroid
C : Below the centroid
D: Anywhere.

Q: ) Match List-1 with List-II and select the correct answer:

| List -I | List - II |
| :--- | :--- |
| A. Concentrated sugar solution | 1. Dilatant fluid |
| B. Sewage sludge | 2. Bingham plastic fluid |
| C. Blood | 3. Pseudoplastic fluid |
| D. Air | 4. Newtonian fluid |

Codes:
A: A:A-1, B-2, C-3, D-4
$B: B: A-1, B-2, C-4, D-3$
C: C: A-2, B-1, C-3, D-4
D : D : A-2, B-1, C-4, D-3

Q: ) Match List I (Definitions) with List II (Properties) and select the correct answer

| List - L | List -II |
| :--- | :--- |
| A. Newtonian fluid | 1. Frictionless and incompressible |
| B. Ideal fluid | 2. Viscosity invariant with shear stress |
| C. Thyrotrophic fluid | 3. Viscosity decreases at higher shear stress |
| D. Rheological fluid | 4. Viscosity increases at higher shear stress. |

Codes:
A : A : A-2, B-4, C-1, D-3
$B: B: A-3, B-1, C-4, D-2$
$C: C: A-2, B-1, C-4, D-3$
D : D:A-3, B-4, C-1, D-2

Q: )


In the set up shown in the above figure assuming the specific weight of water as $10,000 \mathrm{~N} / \mathrm{m}^{3}$, the pressure difference between the point $A$ and $B$ will be

A: $10 \mathrm{~N} / \mathrm{m}^{2}$
B : $-10 \mathrm{~N} / \mathrm{m}^{2}$
C: $20 \mathrm{~N} / \mathrm{m}^{2}$
D : $-20 \mathrm{~N} / \mathrm{m}^{2}$

Q: ) A vertical gate $6 \mathrm{~m} \times 6 \mathrm{~m}$ holds water on one side with the free surface at its. Top the moment about the bottom edge of the water force will be ( $\gamma w$ is the specific weight of water)

A: 18 rw
B: 36 rw
C: 72 rw
D: 216 Yw

