Q: 1) The forces which meet at one point and have their line of action in different planes are called
A : Coplaner non-concurrect forces
B : Non-coplaner non-concurrect forces
C : Non-coplanar concurrent forces
D : Intersecting force

Q: 2) The phenomenon for the internal transfer of forces from one leg to the other is
A : Shear lag
B : Shear leg
C : Shear force
D : Shear stress

Q: 3) A member is balanced at its end by two inclined members carring equal forces, for equilibrium the angle between the inclined bars must be A: 60°
B : 80°
C : 100°
D : 120°

Q: 4) Castigliano's theorem

 represents which of the following method?A: Force
B : Equilibrium
C : Flexibility
D : Displacement

Q: 5) The resultant of two force P_{1} and P_{2} acting at an angle of 90 degrees is given by-
$A: \sqrt{ }\left(P_{1}\right) 2+\left(P_{2}\right)^{2}$
B : $\sqrt{ }\left(P_{1}\right) 2-\left(P_{2}\right)^{2}$
$C: \sqrt{ }\left(P_{1}\right)+\left(P_{2}\right)$
$D: \sqrt{ }\left(P_{1}\right)-\left(P_{2}\right)$

Q: 6) Two forces of 6 newton and 8 Newton which are acting at right angles to each other, will have a resultant of:
A: 5 Newton
B : 8 Newton
C : 10 Newton
D : 12 Newfon

Q: 7) Dimension of the power is:
$A: M^{-1} L^{2} T^{-2}$
$\mathrm{B}: \mathrm{M}^{1} \mathrm{~L}^{-1 T^{-3}}$
C : $M^{-1} \mathrm{LT}^{-3}$
D : $M^{-1} L^{-2}$

Q: 8) A stone freely from its position at rest. What will be the distance travelled in 3 second under gravity with no air friction?
A : 88.2 m
B : 22.0 m
C : 44.1 m
D: 66.3 m Bar B has diameter '2d' and length '2L'..If both the bars are made up of same material and subjected to same load.The ratio of change in length of A to chnage in Length of B is:
A: 0.50
B : 2.00
C : 0.25
D : 4.00

Q: 10) Bar A and bar B are made up of the same material and are of same length.But bar A has diameter 'd' while bar B has diameter '2d'.If both are subjected to same axial load, the ratio of strain energy of bar A to strain energy of bar B is:
A : 4
B: 8
C: 1
D: 2

Q: 11) Stress developed due to application of a load suddenly is ___ time that due to same load
being applied gradually.
A : 2.0
B : 4.0
C : 1.0
D : 0.5

Q: 12) A spherical ball of volume $10^{5} \mathrm{~mm}^{3}$ is subjected to a hydrostatic pressure of 90 Mpa.lf the bulk modulus for the material is 180 $\mathrm{kN} / \mathrm{mm}^{2}$, the change in the volume of:
A: $50 \mathrm{~mm}^{3}$
B : $100 \mathrm{~mm}^{3}$
C : $250 \mathrm{~mm}^{3}$
D : $500 \mathrm{~mm}^{3}$

Q: 13) A 8 mm thick copper sheet is cut

 with a 9 cm diameter round punch.If the punch exerts a force of 16 kN .Find the shear stress in the sheet.A : 7.08 MPa
B : 9.80 MPa
C : 11.43 Mpa
D : 17.86 MPa

Q: 14) A cylinder is consider to be a 'thin cylinder'. If the thickness to internal diameter of the cylinderical shell is:A: Less than 1/10 B : Greater than 1/20 C: Less than $1 / 20$ D : Greater than 1/10

Q: 15) A spherical vessel with an inside diameter of 2 m is made of material with max allowable tensile stress is 500 $\mathrm{N} / \mathrm{mm}^{2}$. If the vessel is pressurized to 25 bar, then the thickness required for the vessel is
A : 2.5 mm
B : 10 mm
C : 5 mm
D : 1.25 mm

Q: 16) The following diagram

 shown a pin jointed steel truss. The force in the member DE will be:A: Zero
B : 2 kN tensile C : 2 kN compressive
D : 3 kN łensile

Q: 17) A steel frame consists of members OA, OB, OC and OD all having same length L and same flexural stiffiness El.If joint O of the frame is rigid and end A and C are Fixed, B is hinged and D is free, then the rotational stififness of the frame at point O is given by:
A : 6 (EI/L)
B : 8 (EI/L)
C : 10 (EI/L)
D : 11 (EI/L)

Q: 18) A single-bay, single-storeyed

 portal frame ABCD has its column ends fixed.If axial deformation is neglected, the kinematic indeterminacy is: A: 3B: 2
C: 6
D: 4

Q: 19) The degree of static indeterminacy N_{s} and degree of kinematic indeterminacy, N_{K} for the plane frame as shown axial deformation are given by-
$A: N_{s}=6, N_{k}=11$
$B: N_{s}=4, N_{k}=6$
$C: N_{s}=6, N_{k}=6$
$D: N_{s}=4, N_{k}=4$

Q: 20) What is the static indeterminacy of the 2D frame given below? A: 10
B : 12
C : 14
D: 16

Q: 21) What is the force in the vertical member CD of the pin-joined frame shown below? A : 12T (Tensile) B : 2T (Compression) C : 5 T (Compression)
D : 5T (Tensions)

