Q: Ductility depends on: [PWD AE 2017]
i. Temperature of the structure
ii. Size of the structure
iii. Applied loading time

Which of the above is/are true?
A : i and iii
B:i and ii
C: ionly
D : All of these

Q: For a beam having cross-section as T , which is a correct statement? [PWD AE 2017]

A : Shear stress variation is parabolic below Neutral axis and normal stress in linear below neutral axis.

B : Shear stress variation in linear and normal stress is parabolic below neutral axis.

C : Both shear and normal stresses are linear along the cross-section.

D : Both shear and normal stresses are parabolic along the cross-section

Q : The ratio of modulus of rigidity and modulus of elasticity (G/E) for any elastic isotropic material is: [PWD AE 2017]
A : Less than $1 / 2$
B : Less than $1 / 3$
C: More than $1 / 3$
D : Both A and C

Q : If $\mathrm{E}, \mathrm{G}, \mathrm{K}$ and μ represent the elastic modulus, bulk modulus and Poisson's ratio respectively of a linear elastic isotropic and homogenous material and if you need to express the stress strain relationship completely for this material at least:
[PWD AE 2017]
A : All the four must be known
B : E,G and μ must be known
C : E,K and μ must be known
D : Any two of the four must be known

Q : A deformable body is under the action of external forces (fi) The external forces satisfy the following conditions with respect to an inertial frame: [PWD AE 2017]
i. $\Sigma \mathrm{Fi}=0$
ii. $\Sigma \mathrm{ri} \times \mathrm{Fi}=0$

These conditions are:
A : Necessary and not sufficient for equlibrium
B : Sufficient for equilibrium
C : Necessary and sufficient for equilibrium
D : None of these

Q : The position and magnitude of maximum bending moment (from suppory with reaction RA) for the beam in figure is: [PWD AE 2016]

A : $2.5 \mathrm{~m}, 3.65 \mathrm{kN}-\mathrm{m}$
B : $2.63 \mathrm{~m}, 3.79 \mathrm{kN}-\mathrm{m}$
C: $2.97 \mathrm{~m}, 2.75 \mathrm{kN}-\mathrm{m}$
D : 2.44 m, 3.56 kN-m

Q: In a simply supported rectangular beam loaded transversely, the maximum tensile bending stress occurs at: [PWD AE 2016]

A : Top fiber
B : Bottom fibre
C: Neutral axis
D : Between top fiber and neutral axis

Q : A thin plate having stress components as $\sigma x=40$ $\mathrm{MPa}, \sigma y=-20 \mathrm{MPa}$., and $\tau x y=10 \mathrm{MPa}$. What will be the yield strength in simple tension as per Mises criterion? [PWD AE 2016]
$A: Y=3100 \mathrm{MPa}$
$\mathrm{B}: \mathrm{Y}=55.67 \mathrm{MPa}$
$C: Y=54.3 \mathrm{MPa}$
$D: Y=1500 \mathrm{MPa}$

Q: For a recangular beam with cross-section having width b and depth d, and loaded as shown in figure, choose the ratio of maximum shear stress to maximum bending stress: [PWD AE 2016]

A: d4a
B:d2a
C: b4a
D: b2a

Q : Yield strength is: [PWD AE 2016]
A : Stress required to produce certain arbitary plastic deformation

B : Stress required to produce certain arbitary elastic deformation

C : Stress required to cause fracture
D : Stress required to cause fatigue

Q : Pure torsion of a shaft produce [PWD AE 2016]
A : Longitudinal normal stress in shaft
B : Only direct shear in the transverse section of the shaft

C : Circumferential share stress on a surface element of shaft

D : A longitudinal shear stress and a circumferential shear stress on a surface element of shaft.

Q: Select the correct assumption ofbernoulli's equation. [DMRC JE 2020]
A: Steady, uniform, irrotational, incompressible flow along streamlines
B: Steady, non-uniform, rotational, incompressible flow along streamlines

C: Un-steady, uniform, rotational, compressible flow
D: Steady, uniform, irrotational, compressible flow along streamlines

Q: If the shear stress is not to exceeds $400 \mathrm{~N} / \mathrm{cm} 2$ then the torque transmitted by a solid shaft of diameter 40 mm would be: [DMRC JE 2020]

A: $0.6 \times \pi \mathrm{N}-\mathrm{m}$
B: $1.3 \times \pi \mathrm{N}-\mathrm{m}$
C: $0.8 \times \pi \mathrm{N}-\mathrm{m}$
D: $16 \mathrm{x} \pi \mathrm{N}-\mathrm{m}$

Q: A cube has a side of length equal to 'a' and is subjected to a ddirect stress in all three side. Then the volumetric strain is [DMRC JE 2020]

A: 3 Times the linear strain
B: 2 Times the linear stress
C: 2 Times the linear strain
D: 3 Times the linear stress

