CIVIL ENGINEERING

DPPSAAE

OBJEGTIVE QUESTION PRAGTICE PROGRAM

1500 ＋questions

COURSE DURATION：－ $100+H R S$

APPLY ONLINE
FOR ENQUIRY：－ 8595517959

Q:) As per the Indian Standard (IS) $456: \mathbf{2 0 0 0}$, if fck is the characteristic strength of concrete, the tensile strength of the concrete is
A : 0.7Vfck
B : 0.5 Vfck
C : 0.87vfck
D : 0.46Vfck

Q:) Maximum depth of neutral axis for singly reinforced beam with Fe500 is (here, depth of the beam = d)
A : 0.44 d
B : 0.46 d
C : 0.48 d
D : 0.53 d

Q:) The minimum area of steel required per meter length of a slab with overall depth of 100 mm consisting of steel grade Fe500 is
A : $96 \mathrm{~mm}^{2}$
B : $150 \mathrm{~mm}^{2}$
C: $120 \mathrm{~mm}^{2}$
D : Insufficient data

Q:) For a square reinforced concrete (RC) column with cross-section of $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ having an effective length of $\mathbf{2 5 0 0} \mathbf{~ m m}$, determine the minimum eccentricity
A : 15 mm
B : $\mathbf{3 0} \mathbf{~ m m}$
C : 20 mm
D: None of these

Q:) Determinate the plan area of a footing carrying load of 1500 kN from 300 mm square column containing 20 mm diameter bars as longitudinal steel. The safe bearing capacity of the soil is $120 \mathrm{kN} / \mathrm{m}^{2}$.
A : $12.5 \mathrm{~mm}^{2}$
B : $8.33 \mathrm{~mm}^{2}$
C : $12.63 \mathrm{~mm}^{2}$
D : $14.38 \mathrm{~mm}^{2}$

Q:) Determine the volume of a 5 m diameter bunker to stone 50 tones of coal having density of $10 \mathrm{kN} / \mathrm{m}^{3}$ A : $5 \mathrm{~m}^{3}$
B : $20 \mathrm{~m}^{3}$
C: $50 \mathrm{~m}^{3}$
D:500 m^{3}

Q:) In which one of the following post-tensioning anchorage system, the high-tension bars are threaded at their ends?
A : Gifford-Udall
B : Freyssinet
C : Lec-McCall
D: Magnel-Blaton

Q:) As per the Indian Standard (IS) 800 : 2007, a maximum effective slenderness ratio for member carrying compressive loads resulting from dead loads and imposed loads
A : 250
B : 300
C : 180
D : 350

Q:) A solid steel plate having ultimate strength of 410 MPa , the design strength in rupture $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ is A : 250
B : 295.2
C : 335.45
D : 410

Q:) A steel plate of size $\mathbf{2 5 0} \mathbf{~ m m} \times 150 \mathrm{~mm} \times 10 \mathrm{~mm}$ with holes for two number of 16 mm diameter bolts having ultimate strength of 410 MPa , the design strength of plate in rupture of critical section is A : 336 kN
B : 382 kN
C : 365 kN
D : 280 kN

Q:) A uniform beam of length 6 m carries ultimate load of $20 \mathrm{kN} / \mathrm{m}$ inclusive of self-weight, the design shear force is
A: 120 kN
B : 90 kN
C : 60 kN
D : 30 kN

Q:) Wind load on steel roof truss for an industrial building will depend on
A : Location of the structure
B : Height of the structure
C : Shape of the structure
D : All of these

Q:) A fixed beam of length L is subjected to concentrated load W at mid-span, the collapse load is (plastic moment = \mathbf{M}_{p}; length of beam = L)
$\mathrm{A}: 6 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
B : $8 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
C: $\mathbf{1 6 M}_{\mathrm{p}} / \mathrm{L}$
D : 4M M / L

Q:) The values of displacements in $\{\mathrm{D}\}$ necessary to ensure the equilibrium of the joints are determined using the relation (displacement vector $=\{\mathrm{D}\}$; stiffness
matrix $=[K] ;$ and load vector $=\{P\}$)
$\mathrm{A}:\{\mathrm{P}\}+[\mathrm{K}]\{\mathrm{D}\}=0$
B : $\{\mathrm{D}\}+[\mathrm{K}]\{\mathrm{P}\}=0$
$\mathrm{C}:\{\mathrm{P}\}+[\mathrm{D}]\{\mathrm{K}\}=0$
$\mathrm{D}:[\mathrm{K}]\{P\}=0$

Q:) The strain energy due to torsion is (torsion = T; modulus of elasticity = E; moment of inertia $=\mathrm{I}$; shear modulus $=\mathbf{G}$; polar moment of area $=\mathrm{J}$)

$$
\begin{aligned}
& \mathrm{A}: \int \frac{T^{2} d x}{2 E I} \\
& \mathrm{~B}: \int \frac{T^{2} d x}{2 G J} \\
& \mathrm{C}: \int \frac{T d x}{2 E I} \\
& \mathrm{D}: \int \frac{T d x}{2 G J}
\end{aligned}
$$

Q:) In two-hinged arch, how many unknown forces exist?
A: One unknown
B : Two unknown
C : Three unknown
D: Four unknown

Q:) The area under β-distribution curve is divided into two equal parts by
A : Most likely time
B : Expected time
C : Optimistic time
D : Pessimistic time

Q:) Among the following excavators the most suitable excavator for hard digging above track level will be A : Back hoe
B : Front shovel
C : Scraper
D : Dragline

Q:) Liquidated damage refers to
A : Damages of walls, plasters and paints due to gushing of liquid or rain
B : Penalty cost to rectify dampness in the buildings arising out of gushing of liquid or rain
C : Penalty cost to rectify sub-standard quality of work
D : Penalty for delaying the work beyond agreed date

Q:) A stream having wetted area (A) of $500 \mathrm{~m}^{2}$ and wetted perimeter (P) of $\mathbf{1 5 0} \mathbf{~ m}$, the hydraulic mean radius in meter is
A: 650
B : 3.33
C : 0.3
D : 350

Q:) The number of sleepers used for rails varies from, where ' n ' length of rat in ' m '
A: $(\eta+1)$ to $(\eta+4)$
B: $(\eta+3)$ to $(\eta+6)$
C: $(n+2)$ to $(n+7)$
$D:(\eta+4)$ to $(n+8)$

Q:) Small hydroelectric project generates power A: < 25MW
B : < 100MW
C: < 550 MW
D: < 1000 MV

Q:) The ratio of the peak load to the installed capcity of the plant is known as
A : Load factor
B : Plant factor
C : Utilization factor
D : All the options are correct

Q:) For nine number rain gauge stations with an error of 10% in the estimation of mean of the rainfall, the coefficient of variation of rainfall Cv obtained as:
A : 10
B : 20
C : 30
D: 40

Q:) The shape of recession limb of a hydrograph depends upon
A : Basin characteristics only
B : Storm characteristics only
C : Both basin characteristics and storm
D : None of these

Q:) W-index will be always

A : Equal to ϕ-index
B : More than ϕ-index
C : Less than ϕ-index
D : A constant fraction of ϕ-index

Q:) If f_{ck} is the characteristic strength of concrete then as per the Indian Standard (IS) 456:2000, the modulus of elasticity of the concrete is
A : 5700vfck
B : 5200Vffk
C : 5000Vfck
D : None of these are correct

Q:) The minimum tension reinforcement required in the concrete beam should not be less than (here, width of the beam = b; depth of the beam = d; and yield strength of steel $=f_{v}$)
A : 0.04 b.d
B : $0.12 \mathrm{~b} . \mathrm{d} / 100$
C: $0.85 \mathrm{~b} . \mathrm{d} / \mathrm{f}_{\mathrm{y}}$
D : $0.87 \mathrm{~b} . \mathrm{d} / \mathrm{f}_{\mathrm{y}}$

Q:) The one-way simply-supported slab for a room of plan dimensions $9 \mathrm{~m} \times 4 \mathrm{~m}$ carries ultimate working load of $9 \mathrm{kN} / \mathrm{m}$. The design moment for the slab should be
A : 12.00 kN.m
B : $18.00 \mathrm{kN} . \mathrm{m}$
C : $9.00 \mathrm{kN} . \mathrm{m}$
D : $27.00 \mathrm{kN} . \mathrm{m}$

Q:) A reinforced concrete (RC) column with slenderness ratio greater than 12 is classified as
A : Short column
B : Long column
C : Axially loaded column
D : Stub column

Q:) The critical section for computing maximum bending moment for the design of isolated footing supporting a concrete column is (considering D as distance between the column face and the footing edge)
A : At the face of the column
B : At a distance d from the column face
C : At the center of the column
D : At a distance $\mathrm{d} / 2$ from the column face

Q:) As per the Indian Standard (IS) 3370:2009, the minimum grade of concrete to be used in liquid retaining structures should be
A : M20
B : M25
C : M30
D : M15

Q:) In a 10 m long simply-supported restressed concrete beam. if restressing force = P; eccentricity = e; area of crosssection = \mathbf{A}; section modulus = \mathbf{Z}; bending moment due to dead load = \mathbf{M}_{g}; bending moment due to live load = $\mathbf{M}_{\mathbf{q}}$, the resultant stress due to dead load and live load at top fiber at mid-span is given by

$$
\begin{aligned}
& \mathrm{A}:\left(\frac{P}{A}-\frac{P \cdot e}{Z}\right)+\left(\frac{M_{g}}{Z}\right)+\left(\frac{M_{q}}{Z}\right) \\
& \mathrm{B}:\left(\frac{P}{A}+\frac{P \cdot e}{Z}\right)+\left(\frac{M_{g}}{Z}\right)+\left(\frac{M_{q}}{Z}\right) \\
& \mathrm{C}:\left(\frac{P}{A}-\frac{P \cdot e}{Z}\right)-\left(\frac{M_{g}}{Z}\right)-\left(\frac{M_{q}}{Z}\right) \\
& \mathrm{D}:\left(\frac{P}{A}+\frac{P \cdot e}{Z}\right)-\left(\frac{M_{g}}{Z}\right)-\left(\frac{M_{q}}{Z}\right)
\end{aligned}
$$

Q:) The Indian Standard (IS) 800:2007 divides various compression member cross-sections into how many buckling class-sections into how many buckling classes?
A:1
B : 2
C: 3
D:4

Q:) In the design of a base plate, the bearing strength of concrete as per the Indian Standard (IS) 800:2007, is taken as (f_{ck} is characteristic strength of concrete)
A : $0.4 \mathrm{f}_{\mathrm{ck}}$
B : $0.45 \mathrm{f}_{\mathrm{ck}}$
C : $0.5 \mathrm{f}_{\mathrm{ck}}$
D : $0.60 \mathrm{f}_{\mathrm{ck}}$

Q:) The Indian Standard (IS) 800:2007 recommends, in taking advantage of reduced design forces, that the purlins be designed as
A : Continuous beams
B : Simply-supported beams
C : Cantilever beams
D: Tension members

Q:) The principal rafter of roof truss is inclined at an angle of 15 . No access is provided except maintenance. The roof is subjected to imposed load of $0.75 \mathrm{kN} / \mathrm{m}^{2}$, the design imposed load is
A: $1.50 \mathrm{kN} / \mathrm{m}^{2}$
B : $0.75 \mathrm{kN} / \mathrm{m}^{2}$
C : $0.65 \mathrm{kN} / \mathrm{m}^{2}$
D : $0.40 \mathrm{kN} / \mathrm{m}^{2}$

Q:) The plastic modulus of rectangular beam of width 200 mm and depth 400 mm is
A : $2 \times 10^{6} \mathrm{~mm}^{3}$
B : $\mathbf{5 . 3 3 \times 1 0 ^ { 6 } \mathrm { mm } ^ { 3 }}$
C : $8 \times 10^{6} \mathrm{~mm}^{3}$
D : $1.07 \times 10^{9} \mathrm{~mm}^{3}$
$\mathrm{Q}:$) If m is number of members; is reactions; and j is number of joints then in case of a planer structure, $3 m+r<3 j$ leads to
A : Stable structure
B : Determinate structure
C : Unstable structure
D : Indeterminate structure

Q:) The Reeve's formula to determine the design discharge from catchment is given by (constant depending on nature of the catchment and location = C; catchment area in square kilometers =A)
A: CA ${ }^{3 / 2}$
B: $\mathrm{CA}^{2 / 3}$
C : AC ${ }^{3 / 2}$
$D: A^{2 / 3}$

Q:) Maximum shear stress for rectangular section is (total transverse shear at the section $=\mathbf{V}$; entire crosssectional area $=\mathbf{A}$)
A : 3V/A
B : 2V/3A
C: 3V/2A
D : V/2A

Q:) Maximum deflection at the mid-span of a simplysupported beam of span I, with uniformly distributed load (w) all over the beam span, and flexural rigidity EI, is (modulus of elasticity = E; moment of inertia of beam
= I)
A : 5w ${ }^{4}$ 4over48E
B : 5wl${ }^{4}$ \over384E
C : wl${ }^{3}$ \over48E
D: w/ ${ }^{3}$ \over3E

Q:) In PERT analysis of a project having large number of activities in its critical path, which of the following assumption is correct?
A : Both activity durations and project completion time follow $\boldsymbol{\beta}$ - distribution
B : Both activity durations and project completion time follow normal distribution
C : Activity durations follow normal distribution, but project completion time follows $\boldsymbol{\beta}$ - distribution D : Activity durations follow β - distribution, but project completion time follows normal distribution

Q:) Among the following excavators, the most suitable excavator for dredging purposes will be A : Back hoe
B : Front shovel
C: Scraper
D : Dragline

Q:) Physical life of an equipment is defined as
A : age at which the equipment is worm out and it can no Longer reliably produce
B : The life over which the equipment can earn a profit
C : Time period that maximizes the profit over the equipment life
D : Age at which depreciation cost exceeds the purchase cost

GIVIL ENGINIEBRING

OPTIONAL PAPER
OBJECTIVE QUESTION PRACTICE PROGRAM 1500 + QUESTIONS

COURSE DURATION

Telegram Channel
EVEREXAM TECH
Ansism

