## Evernon

## Inalia's Best Plaxyom For CIVIL ENGINEERING

## QUESTION PRACTICE PROGRAM

## BIDISTHNTE

# UPPSB:IE 

FEE RS. 199/-/

## Enroll Now

## VALIDITY 1 MONTH

FEE RS. 299/-/
VALIDITY 1 MONTH


$Q$ ) If $V$ is the speed of a moving vehicle, $I$ is the radius of the curve, $g$ is the acceleration due to gravity, $W$ is the width of the carriage way, the super elevation is
A: WV/gr
B: W²V/gr
C: WV/gr²
D: WV²/gr

Q ) Reinforcement in cement concrete slab of road pavements is placed:
A: In the form of welded most mash
B: Longitudinally
C: Transversally
D: Longitudinally and transversally

Q ) Minimum thickness of a layer of fine sand required to cut off the capillary rise of water completely should be:
A: 40 cm
B: 52 cm
C: 64 cm
D: 76 cm

Q ) The suitable gradient within which an engineer must endeavour to design the road is called:
A: Limiting gradient
B: Ruling gradient
C: Average gradient
D: Exceptional gradient

Q ) The ranging of the line between two stations across the raised ground is called:
A: Direct ranging
B: Indirect ranging
C: Random line ranging
D: None of these

Q ) The correct sequencing of setting up a plane table at a working station is:
A: Levelling, centering, orienting
B: Centering, orienting, levelling
C: Orienting, levelling, centering
D: Levelling, orienting, centering

Q ) Which of the following scale is the largest one? A: $1 \mathrm{~cm}=50 \mathrm{~m}$
B: 1 : 42000
C: RF = 1/300000
D: 1cm = 50 km

Q ) The length of a chain is measured from: A: Centre of one handle to centre of other handle B: Outside of one handle to outside of other handle C: Outside of one handle to inside of other handle D: Inside of one handle to inside of other handle

Q ) The horizontal angle between the true meridian and magnetic meridian is called:
A: Azimuth
B: Declination
C: Local attraction
D: Magnetic bearing

Q ) A series of closely spaced contour lines represent a: A: Steep slope
B: Gentle slope
C: Uniform slope
C: Plane surface

Q ) If the intercept on a vertical staff is observed as 0.75 m from a tacheometer, the horizontal distance between the tacheometer and staff station is:
A: 7.5 m
B: 25 m
C: 50 m
D: 75 m

Q ) If the fore bearing of a line is $36^{0} 1^{\prime}$, its back bearing will be: A: $\mathbf{3 6}{ }^{0} 15{ }^{\prime}$
B: $126^{\circ} 15^{\prime}$
C: $143^{0} 15$ '
D: $\mathbf{2 1 6}^{\circ} \mathbf{1 5}^{\prime}$

Q ) The theodolite is an instrument used for measuring very accurately:
A: Horizontal angles only
B: Vertical angles only
C: Horizontal and vertical angles
D: Linear measurement

Q ) The maximum frictional force which comes into play when a body just beginning to slide over the surface of another body is known as:
A: Static friction
B: Dynamic friction
C: Limiting friction
D: Coefficient of friction

Q ) Two balls of equal mass and of perfectly elastic material are lying on the floor. One of the balls with velocity v is made to strike the second ball. Both the balls after impact will move with a velocity:
A: v
B: v/2
C: v/4
D: v/8

Q ) The angular velocity (in radians/ second) of a body rotating at N RPM is:
A: $\pi \mathrm{N} / 60$
B: $\pi N / 180$
C: $2 \pi N / 60$
D: $2 \pi N / 180$

Q ) The velocity ratio of a differential pulley block with D ad d as diameter of larger and smaller pulley is: A: D/(D-d)
B: $D /(D+d)$
C: 2D/(D - d)
D: 2D(D + d)

Q ) A rubber ball is dropped from a height of 2 meters, If there is no loss of velocity after rebounding, the ball will rise to a height of:
A: 1 meter
B: 2 meters
C: 3 meters
D: 4 meters

Q ) The law of motion involved in recoil of a gun is: A: Newton's first law of motion
B: Newton's second law of motion
C: Newton's third law of motion
D: None of these

Q ) The moment of inertia of circular section about it's diameter (d) is:
A: $1 \mathrm{ld}^{3} / 16$
B: Ild ${ }^{3} / 32$
C: $\mathrm{Ild}^{4} / 32$
D: Ild ${ }^{4} / 64$

Q ) Two forces are acting at angle of $12 \mathbf{0}^{\circ}$. The bigger force is 40 newton and the resultant is perpendicular to the smaller force. The smaller force is:
A: 20 N
B: 40 N
C: 80 N
D: None of these

Q ) The acceleration of a particle moving with simple harmonic motion, at any instant is given by:
A: $\omega$. $Y$
$\mathrm{B}: \omega^{2} . \mathrm{y}$
$\mathrm{C}: \omega^{2} . / \mathrm{y}$
D: $\omega^{3}$. y
Where $\boldsymbol{\omega}$ is the angular velocity of the particle in rad/sec and $y$ is the displacement of the particle from mean position.

Q ) The moment of inertia of a rectangular section, 3 cm wide and 4 cm deep, about the $\mathrm{X}-\mathrm{X}$ axis is: A: $9 \mathrm{~cm}^{4}$
B: $12 \mathrm{~cm}^{4}$
C: $16 \mathrm{~cm}^{4}$
D: $20 \mathrm{~cm}^{4}$

Q ) The water content of soil is defined as the ratio of: A: Volume of water to volume of given soil B: Volume of water to volume of voids in soil C: Weight of water to weight of air in voids
D: Weight of water to weight of solids of given mass of soil

Q ) The minimum size of grains of silt is about: A: .0002 mm
B: . 002 mm
C: . 02 mm
D: 0.2 mm

Q ) Gravel and sand are:
A: Cohesive coarse grained soil
B: Cohesive fine grained soil
C: Non-cohesive coarse grained soil
D: Non-cohesive fine grained soil

Q ) The ratio of settlement at any time ' $t$ ' To the final settlement, is known as: A: Coefficient of consolidation
B: Degree of consolidation
C: Consolidation index
D: Consolidation of undisturbed soil

Q ) According to Terzaghi, the net ultimate bearing capacity of clay is given by:

## A: $\mathrm{c}_{\mathrm{q}}$

$\mathrm{B}: \mathrm{c} \mathrm{Nr}$
C: c $\mathrm{N}_{\mathrm{c}}$
D: 1.3 c $\mathrm{N}_{\mathrm{c}}$

Q ) If $w$ is the water content and $Y$ is the unit weight of soil mass, then the unit weight of dry soil $\left(Y_{d}\right)$ is equal to: A: $(\mathrm{w} / \mathrm{Y})+1$
B: $(\gamma / w)+1$
C: $\curlyvee(1+w)$
$D:(1+w) r$

Q ) The relationship between void ratio $€$ and porosity ratio $(\mathrm{n})$ is:

$$
A: n=(1+e) /(1-e)
$$

$$
B: e=(1+n) /(1-e)
$$

$$
C: n=e /(1-e)
$$

$\mathrm{D}: \mathrm{e}=\mathrm{n}(1+\mathrm{e})$

Q ) A soil has bulk density of $2.30 \mathrm{~g} / \mathrm{cm}^{3}$ and water content 15 parcent, the dry density of the sample is: A: $1.0 \mathrm{~g} / \mathrm{cm}^{2}$
B: $1.5 \mathrm{~g} / \mathrm{cm}^{2}$
C: $2.0 \mathrm{~g} / \mathrm{cm}^{2}$
D: $2.5 \mathrm{~g} / \mathrm{cm}^{2}$

Q ) The plasticity index is the numerical difference between
A: Liquid limit and plastic limit
B: Plastic limit and shrinkage limit
C: Liquid limit and shrinkage limit
D: None of these

Q ) Mechanical stabilization of soil is done with the help of:
A: Cement
B: Lime
C: Bitumen
D: Proper grading

Q ) A load 'W' is moving from left to right supported on a simply supported beam of span 'L'. The maximum bending moment at 0.4 L from the left support is:
A: A: 0.16 WL
B: 0.20 WL
C: 0.24 WL
D: 0.25 WL

Q ) In moment distribution method, the sum of distribution factors of all the members meeting at any joint is always:
A: A: Zero
B: Less than 1
C: 1
D: Greater than 1

Q ) When a uniformly distributed load, longer than the span of the girder moves from left to right, then maximum bending moment a mid section occurs when the uniformly distributed load occupies:
A: Less than the left half span
B: Whole of the left half span
C: More than the left span
D: Whole span

Q ) Degree of static indeterminacy of a rigid-jointed plane frame having 15 members, 3 reaction components and 14 joints is:
A: 2
B: 3
C: 6
D: 8

Q ) Two bars of different material and same size are subjected to the same tensile force. If the bars have unit elongation in the ratio of 2:5, then the ratio of the modulus of elasticity of the two materials will be A: 2:5
B: 5:2
C: 4:3
D: 3:4

Q ) The shear force diagram for a cantilever beam of length I and carrying a gradually varying load from zero at the free end and W per unit length at the fixed end is a:
A: Horizontal straight lime
B: Vertical straight lime
C: Inclined lime
D: Parabolic curve

Q ) A simply supported beam carries a varying load from zero at one end and $\omega$ at the other end. If the length of beam is $\alpha$, the maximum bending moment is:
A: $\omega \alpha / 27$
B: $\omega \alpha^{2} / 27$
C: $\omega^{2} \alpha / \sqrt{27}$
D: $\omega^{2} \alpha / 9 \sqrt{3}$

# Q ) The equivalent length of a column of length L. Having 

 one end fixed and the other end free is:A: 2 L
B: L
C: L/2
D: L/ $\sqrt{2}$

Q ) The single rolling load of 8 kN rolls along a girder of 15 m span. The absolute maximum bending moment will be:
A: $8 \mathrm{kN} . \mathrm{m}$
B: $15 \mathrm{kN} . \mathrm{m}$
C: $30 \mathrm{kN} . \mathrm{m}$
D: $60 \mathrm{kN} . \mathrm{m}$

Q ) For a single point load $W$ moving on a symmetrical three hinged parabolic arch of span L , the maximum sagging moment occurs at a distance $x$ from the ends. The value of $x$ is:
A: 0.211 L
B: 0.25 L
C: 0.234 L
D: 0.5 L

Q ) If the length of a wall on either side of a lintel opening is at least half of its effective span $L$, the load W carried by the lintel is equivalent to the weight of brickwork contained in an equilateral triangle, producing a maximum bending moment:
A: WL/2
B: WL/4
C: WL/6
D: WL/8

Q ) The length of the lap in a compression member is kept greater than bar diameter $x$ (permissible stress in bar/five times the bond stress) or:
A: 12 bar diameters
B : 18 bar diameters
C : 24 bar diameters
D : 30 bar diameters

Q ) If H is the overall height of a retaining wall retaining a surcharge, the width of the base slab usually provided, is: A: 0.3 H
B: 0.4 H
C: 0.6 H
D: 0.7 H

Q ) Workability of concrete is inversely proportional to: A: The time of transit
B: The water-oement ratio
C: The air in the mix
D: The size of aggregate

Q ) If diameter of a reinforcement bar is $d$, the anchorage value of the hook is:
A: d4
B: 8d
C: 12d
D: 16 d

Q ) According to Indian standards the pozzolana content in Portland pozzolana cement is
A: 10\% to 25\%
B: 25\% and 35\%
C: 35\% to 50\%
D: More than 50\%

Q ) For longitudinal reinforcing bars in a column, the cover should not be less than:
A: 10 mm
B: 20 mm
C: 30 mm
D: 40 mm

Q ) For the design at retaining walls, the minimum factor of safely against overturning is taken as:
A: 1.5
B: 2.0
C: 2.5
D: 3.0

Q ) For deflection of a simply supported beam to be within permissible limits, the ratio of span to effective depth as per IS 456-1978 should not exceed:
A: 7
B: 20
C: 26
D: 35

Q ) The live load to be considered for an inaccessible roof, is:
A: Nil
B: $75 \mathrm{~kg} / \mathrm{m}^{2}$
C: $150 \mathrm{~kg} / \mathrm{m}^{2}$
D: $200 \mathrm{~kg} / \mathrm{m}^{2}$

Q ) For rivet diameter up to 24 mm , the diameter of the rivet hole is larger than the diameter of the rivet by:
A: 1.0 mm
B: 1.5 m
C: 2.0 mm
D: 2.5 mm

Q ) The effective length of a fillet weld is taken as: A: The actual length plus twice the size of weld B: The actual length plus minus twice the size of weld C: The actual length plus thrice the size of weld D: The actual length minus thrice the size of weld

Q ) The average shear stress for rolled beams is calculated by dividing the shear force at the cross section by the:
A: Gross section of the web
B: Depth of the beam
C: Web thickness
D: Width of flange

Q ) The diameter of cold driven rivet range from: A: 6 to 12 mm
B: 12 to 22 mm
C: 22 to 32 mm
D: $\mathbf{3 2}$ to $\mathbf{4 2} \mathrm{mm}$

Q ) The longitudinal space between the effective length of intermittent butt welds is taken not more than: A: Four times the thickness of the thicker part jointed B: Four times the thickness of the thinner part joined C: Sixteen times the thickness of the thicker part jointed
D: Sixteen times the thickness of the thinner part jointed

## Q ) Maximum permissible slenderness ratio of a member

 carrying loads resulting from wind is:A: 180
B: 250
C: 300
D: 350

Q ) Allowable working stress for rolled steel beam sections compression members may be assumed as:
A: $60 \mathrm{~N} / \mathrm{mm}^{2}$
B: $800 \mathrm{~N} / \mathrm{mm}^{2}$
C: $100 \mathrm{~N} / \mathrm{mm}^{2}$
D: $120 \mathrm{~N} / \mathrm{mm}^{2}$

Q ) The net cross sectional area of a tension member is equal to:
A: Gross sectional area
B: Gross sectional area minus the maximum deduction for rivet holes
C: Gross cross sectional area plus the maximum deduction for rivet holes
D: Two times the gross sectional area

Q ) The stress in the wall of a thin cylinder subjected to internal pressure is:
A: Hoop tension
B: Shear
C: Hoop compression
D: Torsional shear

Q ) Stiffeners are used in plate girders to: A: Reduce the compressive stress
B: Reduce shear stress
C: Take bearing stress
D: Avoid buckling of web plate

Q )When a body is subjected to two equal and opposite forces, acting tangentially across the resisting section, as a result of which, the body tends to shear off across the section, the stress and strain induced is:
A: Tensile stress, tensile strain
B: Compressive stress, compressive strain
C: Shear stress, tensile strain
D: Shear stress, shear strain

Q ) Hook's law holds good up to: A: Yield point B: Elastic limit C: Plastic limit
D: Breaking point

Q ) The poisson's ratio steel varies from: A: 0.23 to 0.27 B: 0.25 to 0.33
C: 0.31 to 0.34
D: 0.32 to 0.42

Q ) In a simply supported beam, carrying a uniformly distributed load w per unit length, the point of contraflexure:
A: Lies in the centre of the beam
B: Lies in the end of the beam
C: Depends on the length of the beam
D: Does not exist

# Q ) A rectangular beam A has length I, width b and depth 

 d. Another beam $B$ has the same length and width but depth is 2 d . The elastic strength of beam $B$ will be:A: Same
B: Double
C: Four times
D: Six times

Q ) The radius of Mohr's circle for two equal unlike principal stresses of magnitude $p$ is:
A: $p$
B: p/2
C: Zero
D: None of these
Q) Rate of change in bending moment is equal to: A: Shear force
B: Deflection
C: Slope
D: Rate of loading

Q ) The maximum compressive stress at the top of a beam is $1.600 \mathrm{~kg} / \mathrm{cm}^{2}$ and the corresponding tensile stress at the bottom of the beam is $400 \mathrm{~kg} / \mathrm{cm}^{2}$ if the depth of the beam is 100 cm . The neutral axis from the top is at
A: $\mathbf{2 c m}$
B: 4 cm
C: 6 cm
D: 8 cm

Q ) If the depth of a simply supported beam carrying an isolated load at its centre, is doubled. The deflection of the beam at its centre will be changed by a factor of A: 2
B: 1/2
C: 8
D: 1/8

Q ) For a giver-atenal young's modulus is $200 \mathrm{GN}-{ }^{2}$ and modulus of rigidity is $80 \mathrm{GN}-{ }^{-2}$ The value of poisson's ratio is:
A: 0.15
B: 0.20
C: 0.25
D: 0.40

Q ) If the dynamic viscosity of a fluid is 0.5 poise and specific gravity is 0.5 then the kinematic viscosity of that fluid in stokes is
A: 0.25
B: 0.5
C: 0.75
D: 1.0

Q ) Centre of buoyancy always
A: Coincide with the centre of gravity
B: Coincide with the centroid of the volume of liquid displaced
C: Remains above the centre of gravity
D: Remans below the centre of gravity

Q ) A rectangular block 2 meters long. 1 meter wide and 1 meter deep floats in water the depth of immersion being 0.5 meter if the water weights $10 \mathrm{kN} / \mathrm{M}^{3}$. Then the weight of the block is
A: 5 kN
B: 10 kN
C: 15 kN
D: 20 kN

Q ) The distance from pipe boundary at which the turbulent shear stress is one-third the wel shear stress' is:
A: $1 / 3 \mathrm{r}$
B: $1 / 2 \mathrm{r}$
C: 2/3 r
D: 3/4 r
Where $r$ is radius of the pipe.

Q ) In series-pipe problems:
A: The head loss is same through pipe B: The discharge is same through each pipe
C: A trial solution is not necessary
D: The discharge through each pipe is added to obtain discharge

Q ) The best hydraulic channel cross section is the one which has a:
A: Minimum roughness coefficient B: Least cost
C: Maximum area for a given flow
D: Minimum wetted perimeter

Q ) For maximum discharge in a circular channel section, the ratio of depth of flow to that of the diameter of the channel is:
A: 0.95
B: 0.81
C: 0.50
D: 0.30

Q ) If the conjugate depths before and after the jump are 0.5 m and $2,5 \mathrm{~m}$ respectively, then the loss of energy in the hydraulic jump will be:
A: 0.8 m
B: 1.6 m
C: 3.2 m
D: 6.4 m

Q ) Hydraulic pressure on a dam depends upon its: A: Length
B: Depth
C: Shape
D: shape and depth

Q ) Manometers are used to measure: A: Pressure in water channels pipes etc B: Difference in pressure at two points
C: Atmospheric pressure
D: Very low pressure

Q)
Q)
(
(
( a)
(

Q? <br> \section*{( <br> \section*{( <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br> } <br> <br> }
(
(
(

$\square$

|  |
| :--- |


(

[^0]$\qquad$

$\qquad$

Q ) S-hydrograph is used to obtain hydrograph of A: Shorter duration from longer duration B: Longer duration shorter duration C: Both (A) and (B)
D: None of these

Q ) A major resistive force in a dam is:
A: Water pressure
B: Self weight of dam
C: Wave pressure
D: Uplift pressure

Q ) Aqueduct or super passage type of works are used when:
A: High flood drainage discharge is small B: High fluid

Q)
Q)
(
(
( a)
(

Q? <br> \section*{( <br> \section*{( <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br> } <br> <br> }
(
(
(

$\square$

|  |
| :--- |


(

[^1]$\qquad$

$\qquad$

Q)
Q)
(
(
( a)
(

Q? <br> \section*{( <br> \section*{( <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br>  <br> <br> } <br> <br> }
(
(
(

$\square$

|  |
| :--- |


(

[^2]$\qquad$

$\qquad$

Q ) Seepage through embankment in an earthen dam is controlled by:
A: Drain trenches
B: Drainage filters
C: Relief wells
D: Provision of downstream beams

Q ) Which of the following is leasl silted for an earthen dam?
A: Ogee spillway
B: Chute spillway
C: Side channel spillway
D: Shaft spillway

Q ) The main function of a divide wall is to :
A: Control the silt entry into the canal
B: Prevent river floods from entering into the canal
C: Separate the under slulces from weir proper
D: Provide smooth flow at sufficiently low velocity

Q ) A divide wall is provided:
A: Parallel to the axis of weir and up stream of it B: At right angles to the axis of weir
C: Parallel to the axis of weir and downstream of it D: At an inclination to the axis of weir

Q ) For water bound macadam roads in localities of heavy rainfall, the recommended value of camber is:
A: 1 in 30
B: 1 in 36
C: 1 in 48
D: 1 in 60

Q ) If the slopping distance is 60 minutes, then the minimum slopping sigh distance for two lane, two way traffic is
A: 160 m
B: 120 m
C: 30 m
D: 60 m

# Q ) If the average centre spacing of vehicles is $\mathbf{2 0}$ meters, 

 then the basic capacity of traffic lane at a speed of 60 kmph is:A: 2,600 vehicles per day
B: 2,000 vehicles per hour
C: 2,500 vehicles per hour
D: 1,000 vehicles per hour

# Q ) The background colour of informatory sign board is 

 A: RedB: Yellow
C: Green
D: White

Q ) The ductility value of bitumen for suitability in road construction should not be less than:
A: 50 cm
B: 60 cm
C: 40 cm
D: 30 cm

## Everinto <br> Has Launched New Course SSC JE PRE 2020\%

PDF Notes $\quad$ Theory Classes

At Just 52199 with Fres $3010+$ Question Practice Batch


[^0]:    (1)

[^1]:    (1)

[^2]:    (1)

