

GUIL ENGHEESNU TOD BATMI

EStart-19 0ct 2021 FValidity-5 Months EEnroll Now

$$
\text { At Just } 599 /=
$$

www.everexam.org

THEORY BATCH

Enroll Now

O Start- 25 Sep 2021
O Duration- $\mathbf{2 5 0 + H o u r s}$
O Validity- Till The Exam

$$
7785 \pi-1 \bigcirc 1
$$

MAINS CONVENTIONAL

- Start- 25 Sep 2021

O Duration- 250-300 Hours
O Validity- Till The Exam jeget-

BPBEAE2021 -Crash Course-

150+ HRS
Start 15 August 2021
Validity Till The Exam

any queries just call now 8595517959 | www.everexam.ory

\because START - 14 AUGUST 2021
© VALIDITY - TILL THE EXAM \square DURATION - 250+ HOURS E ENROLL NOW

At Just

SSC JE PRE 2021 Civil Engineering

\Rightarrow Start Date 15 June 2021
\Rightarrow Duration 400+hours
\Rightarrow Validity 6 Months
\Rightarrow Live Online Classes

UPSSSC JE CRASH COURSE

START 10 AUGUST 2021 TILL THE EXAM -DURATION $120+$ HOURS

UPSSSC JE

RECORDED BATCH

START
29 JULY 2021

DOWNLOAD EVEREXAM APP

Q :) The deflection at the free end of a cantilever beam subjected to a couple ' \mathbf{M} ' at the free end and having an uniform flexural rigidity 'El' throughout its length 'L' is equal to
$\mathrm{A}: \frac{M L^{2}}{2 E I}$
B $: \frac{M L^{2}}{3 E I}$
$\mathrm{C}: \frac{M L^{2}}{6 E I}$
$\mathrm{D}: \frac{M L^{2}}{8 E I}$

Everition 03 SOM \| UPPSC AE $2021 \mid$ VAIBHAV SIR	07:30 PM	
For Any Query Call - 8595517959 \| Website - everexam.org		Daily Class - 7:30 PM

Q :) The first moment of area of a rectangular section of width 'b' and depth ' h ' about centre of gravity is
$\mathrm{A}: \frac{b . h^{2}}{2}$
$B: \frac{b \cdot h^{2}}{4}$
C : Zero

$$
\mathrm{D}: \mathrm{b} \cdot \mathrm{~h}^{2}
$$

Q :) A ductile structure is defined as one for which the plastic deformation before fracture

A : Is smaller than the elastic deformation

B : Vanishes
C : Is equal to the elastic deformation
D : Is much larger than elastic deformation

Q :) When body is subjected to a direct tensile stress (\mathbf{p}) in one plane accompanied by a simple shear stress (q), the maximum normal stress is
$\mathrm{A}: \frac{p}{2}+\frac{1}{2} \sqrt{p^{2}+4 q^{2}}$
B : $\frac{p}{2}-\frac{1}{2} \sqrt{p^{2}+4 q^{2}}$
C: $\frac{p}{2}+\frac{1}{2} \sqrt{p^{2}-4 q^{2}}$
$\mathrm{D}: \frac{p}{2}-\frac{1}{2} \sqrt{p^{2}-4 q^{2}}$ carries a point load at the centre of the beam such that the maximum bending moment there is $12 \mathrm{kN}-\mathrm{m}$, if ' EI ' is the flexural rigidity of the beam, the deflection at the centre is

$$
\begin{aligned}
& \mathrm{A}: \frac{9}{E I} \\
& \mathrm{~B}: \frac{18}{E I} \\
& \mathrm{C}: \frac{36}{E I} \\
& \mathrm{D}: \frac{45}{E I}
\end{aligned}
$$

Q:) A cast iron column of external diameter of $\mathbf{3 0 0} \mathbf{~ m m}$ is $\mathbf{2 0 ~ m m}$ thick. Find safe compressive of 5 , if the crushing strength of material is $550 \mathrm{~N} / \mathrm{mm}^{2}$
A: 1925.21 kN
B : 1935.21 kN
C : 1945.21 kN
D : 1955.21 kN

Q :) A prismatic bar in compression has a cross sectional area $A=1200 \mathrm{~mm}^{2}$ and carries a load P = 90 kN . Normal and shear stresses acting on a plane cut through the bar at $\boldsymbol{\theta}=\mathbf{2 5 ^ { \circ }}$, are respectively
A : 61.6 MPa and 28.7 MPa
B : 49.5 MPA and 23.8 MPa
$\mathrm{C}: 78.2 \mathrm{MPa}$ and 20.7 MPa
D : 73.4 MPa and 29.2 MPa

Everition 03 SOM \| UPPSC AE $2021 \mid$ VAIBHAV SIR	07:30 PM	
For Any Query Call - 8595517959 \| Website - everexam.org		Daily Class - 7:30 PM

Q:) Two shafts of same length and material are joined in series. If the ratio of their diameters is 2, then the ratio of their angles of twist will be
A: 2
B: 4
C : 8

$$
\text { D: } 16
$$

Q :) A cylindrical boiler 1.5 m diameter and made up on 10 mm thick plate is subjected to steam pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. The hoop tension and longitudinal stresses will be

A : $150 \mathrm{~N} / \mathrm{mm}^{2}$ and $75 \mathrm{~N} / \mathrm{mm}^{2}$
B : $150 \mathrm{~N} / \mathrm{mm}^{2}$ and $150 \mathrm{~N} / \mathrm{mm}^{2}$
C : $75 \mathrm{~N} / \mathrm{mm}^{2}$ and $75 \mathrm{~N} / \mathrm{mm}^{2}$
D : $75 \mathrm{~N} / \mathrm{mm}^{2}$ and $150 \mathrm{~N} / \mathrm{mm}^{2}$

Q:) In terms of bulk modulus (K) and modulus of rigidity (C), the Poisson's ratio can be expressed as
$\mathrm{A}: \frac{3 K-4 C}{6 K+4 C}$
B : $\frac{3 K+4 C}{6 K-4 C}$
C: $\frac{3 K-2 C}{6 K+2 C}$
D : $\frac{3 K+2 C}{6 K-2 C}$

Everition 03 SOM \| UPPSC AE $2021 \mid$ VAIBHAV SIR	07:30 PM	
For Any Query Call - 8595517959 \| Website - everexam.org		Daily Class - 7:30 PM

For Any Query Call - 8595517959 | Website - everexam.org
Q :) Lame's equations are applicable for
A : Thick cylinder
B : Thin cylinder
C : Thin spherical vessel
D: Beams

Q :) The D'Alembert principle
A : Is a hypothetical principle
B : Provides no special advantage over Newton's law
C : Is based upon the existence of inertia force
D : Allows a dynamical problem to be considered as a static problem

Q :) he coefficient of friction is the ratio of
A : Limiting friction force to the normal reaction
B : Limiting friction force to the weight of body to be moved
C : Sliding friction force to the normal reaction
D : None of the above

Q :) The vertical support reactions RA and RB for the given beam is
$A: R_{A}=25 \mathrm{kN} . R_{B}=15 \mathrm{KN}$
$B: R_{A}=15 \mathrm{kN}, R_{B}=25 \mathrm{kN}$
$C: R_{A}=12.5 \mathrm{kN}, R_{B}=27.5 \mathrm{kN}$
$D: R_{A}=27.5 \mathrm{kN}, R_{B}=12.5 \mathrm{kN}$

Q :) A simply supported beam of span ' T carries a uniformly variable load of intensity $\mathbf{w}_{0} \mathbf{x}$ over its entire span. Maximum bending moment in the beam is

$$
\mathrm{A}: \frac{w_{0} l^{3}}{27}
$$

$$
\mathrm{B}: \frac{w_{0} l^{3}(\sqrt{3})}{27}
$$

$$
C: \frac{w_{0} l^{3}(\sqrt{2})}{9}
$$

$$
\mathrm{D}: \frac{w_{0} l^{3}}{9}
$$

Q :) The principal design criteria for foundations for reciprocating machinery are as follows:

1. The natural frequency should be at least 40% away from the operating speed of the machine.
2. The amplitude of motion of the foundation should not exceed 0.2 mm .
3. The pressure on soil should be within the respective permissible values.
4. For preliminary design, the maximum pressure on soil due to static load, alone may be taken as 0.4 times the corresponding safe bearing capacity.
A : 1, 2, 3 and 4 are correct
B : 1, 3 and 4 are correct
C: 3 and 4 are correct
D : 2, 3 and 4 are correct

Q :) What will be the natural frequency of a machine foundation which has a base area of $2.20 \mathrm{~m} \times 2.20 \mathrm{~m}$ and a weight of 155 kN including the weight of the machine? Take the value of the coefficient of elastic uniform compression as $4.4 \times 10^{4} \mathrm{kN} / \mathrm{m}^{3}$.
A : $29 / \pi$
B : $58 / \pi$
C : $116 / \pi$
D : None of these

Q:) A propped cantilever beam of span ' L ' is carrying a vertical concentrated load acting at mid span. The plastic moment of the section is $\mathbf{M}_{\mathbf{p}}$. The magnitude of collapse load will be
A : $8 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
B: $6 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
C: $4 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
D : $2 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$

Q :) Which one of the following represents 'constitutive relationship'?
A : Vertical displacements in a structure
B : Rotational displacements in a
structure
C : System of forces in equilibrium
D : Stress-strain behaviour of a material

Q :) In mild steel specimens subjected to tensile test cycle, the elastic limit in tension is raised and the elastic limit in compression is lowered. This is called
A : Annealing effect
B : Bauschinger effect
C : Strain rate effect
D : Fatigue effect

For Any Query Call - 8595517959 | Website - everexam.org

Q :) Consider the following salient points in a stress strain curve of a mild steel bar:

1. Yield point
2. Braking point
3. Yield plateau
4. Proportionality limit
5. Ultimate point

The correct sequence in which they occur while testing the mild steel bar in tension from initial zero strain to failure is
A: 4, 1, 2, 3, and 5 B: 1, 4, 3, 5 and 2
$C: 4,1,3,5$ and $2 \quad D: 1,4,2,3$ and 5

Q :) When a mild steel specimen fails in
a torsion test fracture looks like

Q :) The length, coefficient of thermal expansion and Young's modulus of bar A are twice that of bar B. If the temperature of both bars is increased by the same amount while preventing any expansion, then the ratio of stress developed in bar A to the in bar B will be
A: 2
B: 4
C: 8
D: 16

Q :) If all the dimensions of a prismatic bar of square cross-section suspended freely from the ceiling of a roof are doubled then the total elongation produced by its own weight will increase
A : Eight times
B : Four times
C : Three times
D : Two times

Q :) A prismatic bar of uniform cross-sectional area of $5 \mathrm{~cm}^{2}$ is subjected to axial loads as shown in the given figure.
Portion BC is subjected to an axial stress of

A : $400 \mathrm{~kg} / \mathrm{cm}^{2}$ tension
B : $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ compression
C : $1000 \mathrm{~kg} / \mathrm{cm}^{2}$ tension
D : $600 \mathrm{~kg} / \mathrm{cm}^{2}$ tension

Q :) A rigid beam CBDA is hinged at A and supported by two springs at C and B with a vertical load ' P ' at point D as shown in the given figure. The ratio of stiffness $\left(k_{2} / k_{1}\right)$ of springs at B and C is 2 . The ratio of forces in spring at C to that at B is

A: $3 / 4$
B : 1
C: 4/3
D:2

A : 0.4P, 0.2P
B : 0.3P, 0.4P
C : 0.2P, 0.6P
D : 0.5P, Zero

Q :) A brass bar of solid section is encased in a steel tube as shown in the diagram below
The coefficient of expansion of steel is $11.2 \times 10-$ 6 per ${ }^{\circ} \mathrm{C}$ and the coefficient of expansion of brass is $16.5 \times 10-6$ per ${ }^{\circ} \mathrm{C}$. The composite bar is heated through $60^{\circ} \mathrm{C}$.
Now consider the following statements:

1. The stress in the brass will be tensile
2. The stress in the steel will be tensile
3. The stress in the steel will be compressive
4. The stress in the brass will be compressive

Which of these statements are correct?
A : 1 and 2
B : 1 and 3
C: 2 and 4
D : 2 and 3

Q :) A round steel bar of overall length 40 cm consists of two equal portions of 20 cm each having diameters of 10 cm and 8 cm respectively. Take E as $2 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$. If the rod is subjected to a tensile load of 10 tonnes, the elongation in cm will be given by
A : $\frac{1}{10 \pi}\left(\frac{1}{25}+\frac{1}{16}\right)$
B : $\frac{2}{10 \pi}\left(\frac{1}{25}+\frac{1}{16}\right)$
C : $\frac{3}{10 \pi}\left(\frac{1}{25}+\frac{1}{16}\right)$
D : $\frac{4}{10 \pi}\left(\frac{1}{25}+\frac{1}{16}\right)$

Q :) A prismatic bar ABC is subjected to an axial load of 25 kN ; the reactions R_{A} and R_{c} will be
$A: R_{A}=-10 \mathrm{KN}$ and $R_{C}=-15 \mathrm{KN}$
$B: R_{A}=10 \mathrm{KN}$ and $R_{C}=-35 \mathrm{kN}$
$C: R_{A}=-15 \mathrm{kN}$ and $R_{C}=-10 \mathrm{kN}$
$D: R_{A}=15 \mathrm{kN}$ and $R_{C}=-40 \mathrm{kN}$

Heartiest Congratulations To All Selected Candidates From EverExam

Mancesh Kumar
CPWD-2018

Kunal Panchal MES-2018

Vaihhav Gupta CPWD - 2018

Rajhhatur Prajapati BRO-2018

60+ Selection In Civil SSC JE 2018

Heartiest Conquatulations To All Selected Candidates From EverExam

ALL STATE JE /AE RESULT

Vaibhay RRB JE PATNA

Amernidra RRB JE KOLKATA

Degrak RRB JE ALLAHABAD

Satyam Gupta UPPSC AE

Gaurvendra RRB JE ALLAHABAD

Praveen RRB JE CHENNAI

Shuhham RRB JE GUWAHATI

