01. For the circular shaft AB, as shown in the figure, a torque 'T' is applied at the section XX at C, such that b/a =1.5 shaft is uniform in section $\frac{\pi}{2b}$ =?

- a. 3
- b. 1.5
- c. 0.67
- d. 0.5
- 02. Which of the following diagrams indicates the shear stress distribution for the beam as shown in the figure?

- 03. A 40 mm diameter shaft is subjected to a twisting moment M_t. If max shear stress developed in shaft is 5 N/mm², what is the value of the twisting moment?
 - a. 628.8 Nm
 - b. 638.4 Nm
 - c. 62.8 Nm
 - d. 30.4 Nm
- 04. Torsion applied to a circular shaft results in a twist of 1° over a length of 1 m. the maximum shear stress induced is 120 N/mm² and the modulus of rigidity of the shaft material is 0.8 x 10⁵ N/mm². What is the radius of the shaft
 - a. 300/π
 - b. 180 / π
 - c. 90 / π
 - d. 270 / π
- 05. A solid shaft rotating at 180 rpm is subjected to a mean torque of 5000 Nm. What is the power transmitted by the shaft in KW?
 - a. 25/π
 - b. 20/π
 - c. 60/π
 - d. 270 / π

- 06. A circular shaft which has diameter of 100 mm is subjected to a torque of 5 kN-m. the max shear stress, in N/mm², induced shaft would be
 - A. $\frac{160}{\pi}$
- B. $\frac{120}{\pi}$
- c. $\frac{125}{\pi}$
- D. $\frac{80}{\pi}$
- 07. A solid circular shaft subjected to a torque T produce maximum shear stress f_s which is the maximum principal value in the material. The corresponding diameter of the shaft should be
 - A. $3\sqrt{\frac{\pi f_s}{16T}}$
- B. $3\sqrt{\frac{32T}{\pi f_s}}$
- C. $3\sqrt{\frac{\pi}{16Tf_s}}$
- D. $3\sqrt{\frac{16T}{\pi f_s}}$
- 08. If
 - A = cross-sectional area
 - E = Young's modulus of elasticity
 - G = Modulus of rigidity
 - I = Moment of inertia
 - J = Polar moment of inertia
 - a. AE
 - b. GE
 - c. El
 - d. GJ
- 09. In a circular shaft of diameter d, subjected a torque T, the maximum shear stress induced
 - a. Proportional to d³
 - b. Proportional to d4
 - c. Inversely Proportional to d³
 - d. Inversely Proportional to d⁴
- 10. Which of the following terms represents the torque corresponding to a twist of one radian in a shaft over its unit length?
 - a. Torsional stress
 - b. Torsional rigidity
 - c. Flexural rigidity
 - d. Moment of resistance
- 11. If a shaft turning at N .r.p.m and the mean torque to which the shaft is subjected is T N m, the power transmitted by the shaft in kW would be
 - A. $\frac{2\pi NT}{45000}$
- B. $\frac{2\pi NT}{60000}$
- $c = 2\pi NT$
- **D.** $\frac{2\pi N}{2200}$

- If a shaft rotates at 100 r.p.m and is subjected to a torque of 3000 N-m, the power transmitted in kW would be
 - a. 30π
 - b. 15π
 - c. 20π
 - d. 10π
- 13. The ratio of torsional moments of resistance of a solid circular shaft of diameter D to that of a hollow shaft with external diameter D and internal diameter d is

(Both the shaft are of the same material)

- **A.** $\frac{D^4}{D^4 d^4}$
- $\frac{D^4-d^4}{D^4}$
- **C.** $\frac{D^3}{D^3-d^3}$
- $D. \quad \frac{D^3 d^3}{D^3}$
- 14. A bar AB of diameter 40mm and 4m long is rigidly fixed at its ends. A torque 600 N-m is applied at a section of the bar, 1m from end A. the fixing couples T_A and T_B at the supports A and B, respectively are
 - a. 200 N-m and 400 N-m
 - b. 300 N-m and 150 N-m
 - c. 450 N-m and 150 N-m
 - d. 300 N-m and 100 N-m
- 15. A solid circular shaft has been subjected to a pure torsion moment. The ratio of maximum shear stress to maximum normal stress at any point would be
 - a. 1:2
 - b. 1:1
 - c. 2:3
 - d. 2:1
- 16. Which of the following terms represents the torque that produces a twist of one radian in a shaft of unit length?
 - a. Torsional stress
 - b. Torsional rigidity
 - c. Flexural rigidity
 - d. Moment of resistance
- 17 . A 60 mm dia. Shaft is subjected to a torque of 6 kN-m. G= 8 x 10^4 N/mm 2 . The maximum shear stress induced in the shaft in N/mm 2 will be
 - Α. 8000/9π
 - Β. 4000 / 9 π
 - C. $12000/9\pi$
 - D. 16000/9π

www.everexam.org