- A solid shaft circular cross-section is subjected to a torque T which produces a maximum shear stress f_s in the shaft, the diameter of the shaft should be
 - A. $\sqrt{\pi f_s/16T}$
 - B. $3\sqrt{\pi f_s/16T}$
 - C. $\sqrt{16T/\pi f_S}$
 - D. $3\sqrt{16T/\pi f_S}$
- 2. If the diameter of a shaft subjected to torque alone is double, then the horse power P can be increased to
 - a. 16 P
 - b. 8 P
 - c. 4 P
 - d. 2 P
- Two shaft of solid circular crosssection are identical except for their diameters 'd₁'. They are subjected to the same torque 'T'. The ratio of the strain energies stored U₁ / U₂ will be
 - A. $\left(\frac{d_1}{d_2}\right)^4$
 - **B.** $\left(\frac{d_1}{d_2}\right)^2$
 - C. $\left(\frac{d_2}{d_1}\right)^2$
 - $\mathsf{D.} \ \left(\, \tfrac{d_2}{d_1} \, \right)^4$
- 4. A shaft turns at 150 rpm under a torque of 1500 Nm. Power transmitted is
 - a. 15 π kw
 - b. 10 π kw
 - c. 7.5 π kw
 - d. $5\pi kw$
- A solid circular shaft is subjected to a torque "T" Nm. Which produces a maximum shear stress of f_s N/mm² in the shaft. The required diameter of the shaft would be
 - **A.** $10\left(\frac{16T}{\pi f_s}\right)^{1/2}$
- **B.** $10 \left(\frac{\pi f_s}{16T} \right)^{1/3}$
- **C.** $10\left(\frac{16T}{\pi f_*}\right)^{1/3}$
- **D.** $10\left(\frac{\pi f_s}{16T}\right)^{1/3}$
- 6. A solid shaft has diameter 80 mm. it is subjected to a torque of 4 kNm. The maximum shear stress induced in the shaft would be
 - a. $75 / \pi N / mm^2$
 - b. 150 /π N / mm²
 - c. $125 / \pi N / mm^2$
 - d. $150 / \pi N / mm^2$

- Two steel shaft 'A' and 'B' are used for transmitting power. The ratio of revolutions of shaft i.e N_A / N_B = 2. The ratio of torques on shaft i.e T_A / T_B = 1/2. The ratio of the horse power transmitted by the shaft i.e P_A / P_B
 - a. 1/2
 - b. 1/4
 - c. 1
- A bar AB of diameter 40 mm and 4 m long is rigidly fixed at its ends. A torque of 600 Nm is applied at a section of the bar, 1 m from end A. The fixing couples T_A and T_B at the supports A and B respectively, are
 - a. 450 Nm and 150 Nm
 - b. 200 Nm and 400 Nm
 - c. 300 Nm and 150 Nm
 - d. 300 Nm and 100 Nm
- Strain energy in torsion of a shaft per unit volume is given by (q is shear stress, E- modulus of Elasticity and G is modulus of rigidity)
 - a. $q^2/2G$
 - b. q²/2E
 - c. q² / 4G
 - d. $q^2/4E$
- The ratio of the torsional moments of resistance of a solid circular shaft if diameter 'D' and a hollow circular

Shaft having external diameter D and internal diameter d is given by

- **A.** $\frac{D^4}{D^4 D^4}$
- $\mathbf{B.} \quad \frac{D^4 D^4}{D^4}$
- C. $\frac{D^3-D^3}{D^3}$
- **D.** $\frac{D^3}{D^3 D^3}$
- 11. Match List I with List II and select the correct answer using the codes given below the lists:

List - I	List – II
A. Torque –twist relationship for a circular shaft	1. $1/2\sqrt{\sigma^2 + 4\tau^2}$
B. Strain energy of elastic torsion	2. Gr θ / I
C. Circumferential shear stress	3. (GJ / 2/) θ ²
D. Maximum shearing stress due to combined torsion	4. $\frac{GJ}{l}\theta$
Codes:	
a. A-2, B-3, C-4, D	-1
b. A-4, B-1, C-2, D	-3
c. A-2, B-1, C-4, D	
d. A-4, B-3, C-2, D	-1

- 12. A solid circular shaft, ABC has a total length of 3, a' A gear wheel positioned at B, at distance 'a' from the left hand end A, exerts a torque T. if the ends A and C are intsantaneously locked in position by brakes just before the torque is applied , the torsional moments induced in both segments T₁ (AB) and T₂ (BC) are in the ratio
 - a. 3:1
 - b. 2:3
 - c. 1:2
 - d. 2:1

- 13. Two shafts having same length and material are joined in series and subjected to a torque of 10 kNm. If the ratio of their diameters is 2:1 then the ratio of their angles of twist is
 - a. 16:1
 - b. 2:1
 - c. 1:2 d. 1:16
- 14. A solid circular shaft of diameter d is subjected to a twisting moment T. the
 - maximum shear stress in the shaft is proportional to
 - $a. d_2$
 - b. d
 - c. 1/d²
 - d. 1/d³
- 15. The maximum shear stress produced in a shaft is 5 N/mm², the shaft is of 40 mm diameter what is the approximate value of twisting moment?
 - a. 628 Nm
 - b. 63 Nm
 - c. 126 Nm
 - d. 251 Nm
- 16. The failure surface of a standard cast iron torsion specimen, subjected to a torque is along
 - a. The surface helicoidal at 45° to the axis is the specimen
 - b. The curved surface at the grips
 - c. The plane surface perpendicular to the axis of the specimen
 - The curved surface perpendicular to the axis of the specimen