Q 1 Poisso's ratio is defined as the ratio of
a. Longitudinal stress and longitudinal strain
b. Lateral stress and longitudinal strain
c. Longitudinal stress and lateral stress
d. Lateral stress and longitudinal stress

Q2 A prismatic bar $A B C$ is subjected to an axial load of 25 kN ; the reactions R_{A} and R_{c} will be
. $R_{A}=-10 \mathrm{kN}$ and $R_{c}=-15 \mathrm{kN}$
b. $R_{A}=10 \mathrm{kN}$ and $R_{c}=-35 \mathrm{kN}$
c. $R_{A}=-15 \mathrm{kN}$ and $R_{C}=-10 \mathrm{kN}$
d. $R_{A}=15 \mathrm{kN}$ and $R_{C}=-40 \mathrm{kN}$

Q 3 Consider the following statement:

1. Failure occurs beyond elastic
limit
2. Rupture takes, 0 place immediately after elastic limit
3. Permanent set occurs beyond elastic limit.
Which of these are considered in the theories of failure?
a. 1,2 , and 3
b. 1 and 3 only
c. 2 and 3 only
d. 1 and 2 only

Q4 Consider the following salient points in a stress-strain curve of a mild steel bar :

1. Yield point
2. Braking
3. Yield plateau
4. Proportionally limit
5. Ultimate point

The correct sequence in which they

steel bar in tension from initial zero strain to failure is
a. $4,1,2,3$ and 5
b. $1,4,3,5$ and 2
c. $4,1,3,5$ and 2
d. 1, 4, 2, 3 and 5

Q 5 Two circular mild steel bars A and B of equal length $/$ have diameters $\mathrm{d}_{\mathrm{A}}=2 \mathrm{~cm}$ and $\mathrm{d}_{\mathrm{B}}=3 \mathrm{~cm}$. each is subjected to a tensile load of magnitude P. the ratio of the elongations of the bars $I_{A} I_{B}$ is
a. $2 / 3$
b. $3 / 4$
c. $4 / 9$
d. $9 / 4$

Q 6 A mild steel rod tapes uniformly from 24 mm dias. To 12 mm dial. Over its length of 400 mm . the rod when held vertical is subjected to an axial tensile load of $12 \mathrm{kN} . \mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ the extension of the rod in mm would be
A. $\frac{3 \pi}{2}$
B. $\frac{2}{3 \pi}$
4
C.

Q 7 A member $A B C D$ is subjected to a force system as shown in the figure

Q 8 Two-dimensional stress system on a block made of a material with poisson's ratio of 0.3 is shown

Q14 A mechanism shown in the figure consists of equally long steel and copper wires which carry the applied load in equal shares. What shall be the ratio of the diameter of the copper wire to that of the steel

