Q 1 The bending moment diagram of the beam shown in the figure is

(a)

(d)

Q2. The SFD and BMD for a beam are shown in the given figure I and II. The corresponding loading diagram would be

Q3 A simply supported beam is loaded as shown in the given figure. The bending moment at E would be \qquad

$$
|-1 \mathrm{~m} \rightarrow| \leftarrow 1 \mathrm{~m} \rightarrow|\leftarrow 1 \mathrm{~m} \rightarrow| \leftarrow 1 \mathrm{~m} \rightarrow \mid
$$

a. $6 \mathrm{t}-\mathrm{m}$ (Sagging)
b. $4 \mathrm{t}-\mathrm{m}$ (Hogging)
c. $6 \mathrm{t}-\mathrm{m}$ (Hogging)
d. 4 t-m (Sagging)

Q4 Which one of the following statement is correct?
a. Shear force is the first derivative of bending

b. Shear force is the first derivative of intensity of load
c. Load intensity on a beam is the first derivative of bending moment.
d. Bending moment is the first derivative of shear force.

Q 5 For the beam shown in the given figure, the maximum positive bending moment is equal to negative bending moment. The value of L_{1} is

Q 6 For the shear force diagran! snown in given

The loaded beam will be

Q 7 Match List-I (Type and position of force on cantilever) with List-II (Shape of moment diagram for cantilever) and select the correct answer using the codes given below the lists:

Codes :
a. $A-1, B-2, C-3, D-4$
b. $A-4, B-3, C-2, D-1$
c. $A-3, B-1, C-4, D-2$
d. $A-1, B-3, C-4, D-2$

Q 8 If the area under the shear curve for a beam between the tow points X_{1} and X_{2} is ' k ', then the difference between the moments at the tow points X_{1} and X_{2} will be equal to

Q 9 Consider the following statements:
A simply-supported beam is subjected to a couple somewhere in the span. It would produce

1. A rectangular SF diagram.
2. Parabolic BM diagrams.
3. Both (+) ve and (-) BMs which are maximum at the point of application of the couple

Of these statements

a. 1,2, and 3 are correct
b. 1 and 2 are correct
c. 2 and 3 are correct
d. 1 and 3 are correct

Q10 A simply supported beam is shown in the given figure:

List-I	List-II	
A-Carrying linearly varying load from zero at its free end and maximum at the fixed end B-Subjected to uniformly	1. Parabola distributed load 2. Rectangle C-Carrying concentrated load at its free end D-Whose free end is subjected to a couple	4. Triangle

The corresponding SFD and BMD would be

| (a) 30 kN\oplus
 $\mathbf{S F D}$ \ominus $\mathbf{l n} 10$ |
| ---: | ---: |

BMD $\oplus 40 \mathrm{kNm}$
(b) $30 \mathrm{kN} \mathrm{SFD}^{\oplus} 10 \mathrm{kN}{ }^{10 \mathrm{kN}} \theta 30 \mathrm{kN}$ BMD $\oplus \overbrace{}^{40 \mathrm{kNm}}$
(c) $30 \mathrm{kN} \oplus \mathrm{SFD}^{\oplus} 10 \mathrm{kN}{ }^{10 \mathrm{kN}} 30 \mathrm{kN}$ BMD
(d) 30

Q 11 The beam $A B C$ shown in the given figure is horizontal. The distance to the point of contraflexure from the fixed end ' A ' is

A

a. $\quad 0.333 \mathrm{~m}$
b. 0.666 m
c. 0.25 m
d. 0.75 m

Q 12 A beam S.F.D and B.M.D are shown in figure

10 kNm

The corresponding load diagram will be
(a)

(b)
$10 \mathrm{kNm} \quad 10 \mathrm{kNm}$
(c)

(d)

Q 13 The bending moments at point A, B and C of the beam shown in the given figure will be

$\mid-2.5 \mathrm{~m} \rightarrow-2.5 \mathrm{~m} \rightarrow-2.5 \mathrm{~m} \rightarrow 2.5 \mathrm{~m} \rightarrow 1$
a. $\mathbf{1 0} \mathbf{~ k N m}, 10 \mathrm{kNm}$ and 10 kNm
b. $10 \mathrm{kNm}, 10 \mathrm{kNm}$ and -10 kNm
c. $20 \mathrm{kNm}, \mathbf{1 0} \mathrm{kNm}$ and -10 kNm
d. $\mathbf{1 0} \mathrm{kNm},-\mathbf{1 0} \mathrm{kNm}$ and 20 kNm

Q 14 The bending moment diagram of the beam shown in figure

Q 15 A loaded beam PQRS is shown in the given figure

$142 \mathrm{~m} \rightarrow-6 \mathrm{~m} \longrightarrow-2 \mathrm{~m} \rightarrow 1$
The magnitude of reaction at R will be zero if the value of load
' W ' is
a. $\mathbf{2 k N}$

d. 6

Q 16 The beam shown in the figure given below is subjected to concentrated load and clockwise couple. What is the vertical reaction at A ?

Q 17 Couple M is applied at C on a simply supported beam AB. What is the maximum shear force the beam ?

(a) 2 kN \qquad
(c) \square 3 kN
(d) $1 \mathrm{kN} \square 3 \mathrm{kN}$

