- 1. The cross-section of a bar is subjected to a uniaxial tensile stress p. The tangential stress on a plane inclined at θ to the cross-section of the bar would be
 - a. $P \sin 2\theta / 2$
 - b. P sin 2θ
 - c. P cos 2θ / 2
 - d. P cos 2θ
- 2. Consider the following statements:
 - 1. On planes having maximum and minimum principal stresses. There will be no tangential stress.
 - 2. Shear stresses on mutually perpendicular planes are numerically equal.
 - 3. Maximum shear stress is equal to half the sum of the maximum and minimum principal stresses.

Of these statements

- a. 1,2 and 3 are correct
- b. 1 and 2 are correct
- c. 2 and 3 are correct
- d. 1 and 3 are correct
- 3. In a stressed body, an elements cube of material is taken at a point with is forces perpendicular to x and y reference axes. Tensile stresses equal to 15 kN/cm² and 9 kN/cm² are observed on these respective forces. They are also accompanied by shear stresses equal to 4 kN/cm² the magnitude of the principal stresses at the point are
 - a. 12 kN/cm² tensile and 3 kN/cm² tensile
 - 17 kN/cm2 tensile and 7 kN/cm2 tensile
 - 9.5 kN/cm² tensile and 6.5 kN/cm² tensile
 - d. 19 kN/cm² tensile and 13 kN/cm² tensile
- 4. In а rectangular element subjected to like principal tensile stresses p₁ and p₂ in two mutually perpendicular directions x and y, the maximum shear stress would occur along the
 - a. Plane normal to x-axis
 - Plane normal to x-axis
 - Plane at 45° to y-direction
 - d. Planes at 45° and 135 to y-direction
- 5. On an element shown in the given figure, the stresses are (in Mpa)

The radius of mohr's circle and the principle stresses $\sigma_1 \sigma_2$ are

(in Mpa)

d. 70

	Radius = r	σ_2		σ_1
a.	50	120		20
b.	55	30	0	11
c.	60	140	$_{IA}$	20

140

- 6. At a point in a strained material, if perpendicular mutually two tensile stresses of 2000 kg/cm² and 1000 kg/cm² are acting, then the intensity of tangential stress on a plane inclined at 15 to the axis of the minor stress will be
 - a. 125 kg/cm²
 - b. 250 kg/cm²
 - c. 500 kg/cm²
 - d. 1000 kg/cm²
- 7. In a plane stress problem there are normal tensile stresses σ_x and σ_y accompanied by shear stress τ_{xy} at a point along orthogonal cartesian co-ordinates x and y respectively. If it is observed that the minimum principal stress on a certain is zero then

A.
$$au_{xy} = \sqrt{\sigma_x + \sigma_y}$$

B.
$$au_{xy} = \sqrt{\sigma_x - \sigma_y}$$

C.
$$au_{xy} = \sqrt{\sigma_x.\sigma_y}$$

D.
$$au_{xy} = \sqrt{\sigma_x/\sigma_y}$$

- The state of stresses on an element is shown in the given figure. The values of stresses are σ_x (= 32 Mpa); σ_y (= -10 Mpa) and major principal stress σ_1 (= 40MPa). The minor principal stress σ_2 is

 - -22 Mpa
 - -18 Mpa
 - -22 Mpa
 - Indeterminable due to insufficient data
- The radius of mohr's circle of stress of a strained element is 20 N/mm² and minor tensile stress in 10 n/mm². The major principal stress
 - - a. 30 N/mm²
 - 50 N/mm² 60 N/mm²
 - d. 100 N/mm²
- 10. If prismatic member having area of cross-section 'A' is subjected to a tensile load 'P' then the maximum shear stress and its inclination with the direction of load will be
 - a. P/A and 45°
 - b. 2P/A and 45°
 - P/2A and 45°
 - d. P/A and 60°
- 11. A bar of square cross-section, having an area of cross-section 'A' is subjected to a compressive force 'P' as shown in the figure

- $\frac{P}{A}\sin 2\theta$
- $\frac{P}{A}\cos 2\theta$
- C. $\frac{P}{2A}\sin 2\theta$

- 12. The radius of mohr's circle is zero when the state of stress is such that
 - a. Shear stress is zero
 - b. There is pure shear
 - c. There is no shear stress but identical direct stresses
 - d. There is no shear stress but equal identical direct stresses, opposite in nature, in two mutually perpendicular directions
- 13. The figure shown the stress condition of an element, the principal stresses are

- +2τ
- b. <u>+</u> τ/2
- <u>+</u> τ
- d. $+2\tau/3$
- 14. If the principal stresses at a point in a stressed body are 150 kN /m² tensile and 50 kN/m² compressive, then maximum shear stress at this point will be
 - a. 100 kN/m² f
 - b. 150 kN/m² f
 - c. 200 kN/m² f
 - d. 250 kN/m² f
- 15. In the mohr's circle for strains, radius of mohr's circle gives the
 - a. Minimum value of normal strain
 - b. Maximum value of normal strain
 - c. Maximum vale of shear strain
 - d. Half of maximum value of shear strain